Assessing the shear strength of sandy soil reinforced with polyethylene-terephthalate: an AI-based approach
Access Status
Authors
Date
2024Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
This research aimed to investigate the effectiveness of Polyethylene-Terephthalate (PET) as a reinforcement material for sandy soils in enhancing the shear strength. To achieve this, different concentrations of PET were tested, and 118 sets of data were collected. Parameters such as relative density, normal stress in direct shear strength test, and types of PET elements (1 × 1, 1 × 5, and fiber) were also recorded. Subsequently, four decision tree-oriented machine learning (ML) methods—decision tree (DT), random forest (RF), AdaBoost, and XGBoost—were applied to construct models capable of forecasting enhancements in shear strength. The evaluation of these models' effectiveness was conducted using four established statistical metrics: R2, RMSE, VAF, and A-10. The results showed that AdaBoost results in the highest prediction accuracy among other algorithms, representing the high modelling performance of the algorithm in dealing with complex nonlinear problems. The conducted sensitivity analysis also revealed that relative density is the most crucial parameter for all the algorithms in predicting the output, followed by PET percentage and normal stress. Furthermore, to make the developed model in this study more practical and easy to use, a Graphical User Interface (GUI) was created, enabling the engineers and researchers to perform the analysis straightforwardly.
Related items
Showing items related by title, author, creator and subject.
-
Sabzalisenejani, Ali (1998)The effective shear strength of artificially overconsolidated clays with continuous fissures, or with discontinuous or partial fissuring, has been discussed from both the experimental and numerical points of view.Direct ...
-
Chang, Ee Hui (2009)Concrete is by far the most widely used construction material worldwide in terms of volume, and so has a huge impact on the environment, with consequences for sustainable development. Portland cement is one of the most ...
-
Experimental and PFC2D numerical study of progressive shear behaviour of single rough rock fracturesAsadi, Mohammad Sadegh (2011)This thesis investigates the progressive shear behaviour and asperity degradation of single rough rock fractures using 2D numerical simulations and laboratory experiments.The particle flow code (PFC) was chosen for ...