Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants
Access Status
Authors
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen–angiosperm interactions may also be relevant to pathogen–gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.
Related items
Showing items related by title, author, creator and subject.
-
Sperschneider, J.; Ying, H.; Dodds, P.; Gardiner, D.; Upadhyaya, N.; Singh, Karam; Manners, J.; Taylor, J. (2014)Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes ...
-
Lu, X.; Kracher, B.; Saur, I.; Bauer, S.; Ellwood, Simon; Wise, R.; Yaeno, T.; Maekawa, T.; Schulze-Lefert, P. (2016)© 2016, National Academy of Sciences. All rights reserved. Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune ...
-
Deng, C.; Plummer, K.; Jones, Darcy; Mesarich, C.; Shiller, J.; Taranto, A.; Robinson, A.; Kastner, P.; Hall, N.; Templeton, M.; Bowen, J. (2017)© 2017 The New Zealand Institute for Plant and Food Research Limited. Background: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, ...