Show simple item record

dc.contributor.authorAljuaydi, Fahad
dc.contributor.authorWiwatanapataphee, Benchawan
dc.contributor.authorWu, Yong
dc.date.accessioned2024-10-03T07:08:25Z
dc.date.available2024-10-03T07:08:25Z
dc.date.issued2023
dc.identifier.citationAljuaydi, F. and Wiwatanapataphee, B. and Wu, Y.H. 2023. Multivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events. Alexandria Engineering Journal. 65: pp. 151-162.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96005
dc.identifier.doi10.1016/j.aej.2022.10.015
dc.description.abstract

This paper concerns multivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events. Five model architectures based on the multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), CNN-LSTM and Autoencoder LSTM networks have been developed to predict traffic flow under a road crash and the rain. Using an input dataset with five features (the flow rate, the speed, and the density, road incident and rainfall) and two standard metrics (the Root Mean Square error and the Mean Absolute error), models’ performance is evaluated.

dc.languageEnglish
dc.publisherELSEVIER
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP170100341
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Multidisciplinary
dc.subjectEngineering
dc.subjectNon-recurrent events
dc.subjectTraffic prediction
dc.subjectMultivariate model
dc.subjectMachine Learning
dc.subjectLSTM
dc.titleMultivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events
dc.typeJournal Article
dcterms.source.volume65
dcterms.source.startPage151
dcterms.source.endPage162
dcterms.source.issn1110-0168
dcterms.source.titleAlexandria Engineering Journal
dc.date.updated2024-10-03T07:08:25Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidWiwatanapataphee, Benchawan [0000-0003-1875-6984]
curtin.contributor.researcheridWiwatanapataphee, Benchawan [E-5421-2010]
curtin.contributor.researcheridWu, Yong [D-4327-2013]
dcterms.source.eissn2090-2670
curtin.contributor.scopusauthoridWiwatanapataphee, Benchawan [6508175775]
curtin.contributor.scopusauthoridWu, Yong [7406889735]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/