Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
This review explores fundamental analytical modelling approaches using conventional composite theory and artificial intelligence (AI) to predict mechanical properties of 3D printed particle-reinforced resin composites via digital light processing (DLP). Their mechanisms, advancement, limitations, validity, drawbacks and feasibility are critically investigated. It has been found that conventional Halpin-Tsai model with a percolation threshold enables the capture of nonlinear effect of particle reinforcement to effectively predict mechanical properties of DLP-based resin composites reinforced with various particles. The paper further explores how AI techniques, such as machine learning and Bayesian neural networks (BNNs), enhance prediction accuracy by extracting patterns from extensive datasets and providing probabilistic predictions with confidence intervals. This review aims to advance a better understanding of material behaviour in additive manufacturing (AM). It demonstrates exciting potential for performance enhancement of 3D printed particle-reinforced resin composites, employing the optimisation of both material selection and processing parameters. It also demonstrates the benefit of combining empirical models with AI-driven analytics to optimise material selection and processing parameters, thereby advancing material behaviour understanding and performance enhancement in AM applications.
Related items
Showing items related by title, author, creator and subject.
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Lin, R.; Lu, Chungsheng (2010)Carbon nanotube-based composite is becoming increasingly popular and offers great potential for highly demanding practical high strength and high damping applications. The excellent damping capacity of CNTs is primarily ...
-
Dong, Yu; Mathew, Roney (2011)Epoxy resins have shown outstanding material merits of low cost, ease of processing, fine adhesion to many substrates and good chemical resistance with a wide range of applications such as adhesives, construction materials ...