Show simple item record

dc.contributor.authorWang, L.
dc.contributor.authorZhou, X.
dc.contributor.authorXu, Honglei
dc.contributor.authorTian, T.
dc.contributor.authorTong, H.
dc.date.accessioned2024-10-16T01:43:28Z
dc.date.available2024-10-16T01:43:28Z
dc.date.issued2023
dc.identifier.citationWang, L. and Zhou, X. and Xu, H. and Tian, T. and Tong, H. 2023. Short-term electrical load forecasting model based on multi-dimensional meteorological information spatio-temporal fusion and optimized variational mode decomposition. IET Generation, Transmission and Distribution. 17 (20): pp. 4647-4663.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96138
dc.identifier.doi10.1049/gtd2.12992
dc.description.abstract

This paper proposes a method to enhance the accuracy of power load forecasting by considering the variability in the impact of multi-dimensional meteorological information on power load in diverse regions. The proposed method employs spatio-temporal fusion (SF) of multi-dimensional meteorological information and applies the Copula theory to analyze the non-linear coupling of meteorological information from multiple stations with power load to achieve SF in the spatial dimension. To enhance the accuracy of load forecasting in the time dimension, this paper improves the core parameters of the variational mode decomposition (VMD) using the marine predators algorithm (MPA) and utilizes the weighted permutation entropy (WPE) to construct the MPA-VMD fitness function for the adaptive decomposition of the load sequence. Moreover, this paper constructs input sets for the long short-term memory model and the MPA-LSSVM model by combining each component of the time dimension and each meteorological information of the spatial dimension to obtain the prediction results of each component. The prediction model corresponding to each component is selected according to the evaluation index and reconstructed to obtain the overall prediction results. The analysis results demonstrate that the proposed forecasting method outperforms the traditional forecasting method and effectively enhances the accuracy of power load forecasting.

dc.relation.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP160100528
dc.titleShort-term electrical load forecasting model based on multi-dimensional meteorological information spatio-temporal fusion and optimized variational mode decomposition
dc.typeJournal Article
dcterms.source.volume17
dcterms.source.number20
dcterms.source.startPage4647
dcterms.source.endPage4663
dcterms.source.issn1751-8687
dcterms.source.titleIET Generation, Transmission and Distribution
dc.date.updated2024-10-16T01:43:28Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidXu, Honglei [0000-0003-3212-2080]
curtin.contributor.researcheridXu, Honglei [A-1307-2010]
dcterms.source.eissn1751-8695
curtin.contributor.scopusauthoridXu, Honglei [23037699600] [57203334243] [57203334253]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record