Rhizopine biosensors for plant-dependent control of bacterial gene expression
Access Status
Authors
Date
2023Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.
Related items
Showing items related by title, author, creator and subject.
-
Gutiérrez-Barranquero, J.; Reen, F.; McCarthy, R.; Dobson, A.; O'Gara, Fergal (2015)© 2015, Springer-Verlag Berlin Heidelberg. The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and ...
-
Caldwell, M.; Bornman, Janet; Ballare, C.; Flint, S.; Kulandaivelu, G. (2007)There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting ...
-
Morgan, Dale (2007)Bacterial resistance to non-antibiotic agents is being increasingly studied. Plasmid-mediated resistance to cationic agents, which are important biocides, has been described in antibiotic-resistant Staphylococcus aureus. ...