Show simple item record

dc.contributor.authorHaskett, T.L.
dc.contributor.authorGeddes, B.A.
dc.contributor.authorParamasivan, P.
dc.contributor.authorGreen, P.
dc.contributor.authorChitnavis, S.
dc.contributor.authorMendes, M.D.
dc.contributor.authorJorrín, B.
dc.contributor.authorKnights, H.E.
dc.contributor.authorBastholm, T.R.
dc.contributor.authorRamsay, Josh
dc.contributor.authorOldroyd, G.E.D.
dc.contributor.authorPoole, P.S.
dc.date.accessioned2024-10-22T08:19:06Z
dc.date.available2024-10-22T08:19:06Z
dc.date.issued2023
dc.identifier.citationHaskett, T.L. and Geddes, B.A. and Paramasivan, P. and Green, P. and Chitnavis, S. and Mendes, M.D. and Jorrín, B. et al. 2023. Rhizopine biosensors for plant-dependent control of bacterial gene expression. Environmental Microbiology. 25 (2): pp. 383-396.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96176
dc.identifier.doi10.1111/1462-2920.16288
dc.description.abstract

Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.

dc.languageEnglish
dc.publisherWILEY
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectMicrobiology
dc.subjectRHIZOBIUM-MELILOTI
dc.subjectNITROGEN-FIXATION
dc.subjectESCHERICHIA-COLI
dc.subjectIN-VIVO
dc.subjectRHIZOSPHERE
dc.subjectCATABOLISM
dc.subjectTRANSCRIPTION
dc.subjectREGULATOR
dc.subjectPROTEIN
dc.subjectLEGUMINOSARUM
dc.subjectBacteria
dc.subjectGenes, Bacterial
dc.subjectBiosensing Techniques
dc.subjectGene Expression
dc.subjectBacteria
dc.subjectBiosensing Techniques
dc.subjectGene Expression
dc.subjectGenes, Bacterial
dc.titleRhizopine biosensors for plant-dependent control of bacterial gene expression
dc.typeJournal Article
dcterms.source.volume25
dcterms.source.number2
dcterms.source.startPage383
dcterms.source.endPage396
dcterms.source.issn1462-2912
dcterms.source.titleEnvironmental Microbiology
dc.date.updated2024-10-22T08:19:00Z
curtin.departmentCurtin Medical School
curtin.accessStatusIn process
curtin.facultyFaculty of Health Sciences
curtin.contributor.orcidRamsay, Josh [0000-0002-1301-7077]
dcterms.source.eissn1462-2920
curtin.contributor.scopusauthoridRamsay, Josh [8529700000]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record