Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Calcium hydride with aluminium for thermochemical energy storage applications

    Access Status
    Open access
    Authors
    Desage, Lucie
    Humphries, Terry
    Paskevicius, Mark
    Buckley, Craig
    Date
    2023
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Desage, L. and Humphries, T.D. and Paskevicius, M. and Buckley, C.E. 2023. Calcium hydride with aluminium for thermochemical energy storage applications. Sustainable Energy and Fuels. 8 (1): pp. 142-149.
    Source Title
    Sustainable Energy and Fuels
    DOI
    10.1039/d3se01122d
    Faculty
    Faculty of Science and Engineering
    School
    School of Elec Eng, Comp and Math Sci (EECMS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP200102301
    URI
    http://hdl.handle.net/20.500.11937/96922
    Collection
    • Curtin Research Publications
    Abstract

    Thermochemical energy storage has the potential to unlock large-scale storage of renewable energy sources by integrating with power production facilities. Metal hydrides have high thermochemical energy storage densities through reversible hydrogenation. Particularly, calcium hydride presents remarkable properties to integrate with high-temperature systems. The addition of aluminium to calcium hydride enables lower operating temperatures below 700 °C. The CaH2-2Al system reacts through a two-step reaction mechanism, which was verified via in situ powder diffraction analysis. The thermodynamics of dehydrogenation have been determined for both dehydrogenation steps with step 1 having a ΔHdes = 79 ± 3 kJ mol−1 and ΔSdes = 113 ± 4 J mol−1 K−1, while step 2 has a ΔHdes = 99 ± 4 kJ mol−1 and ΔSdes = 128 ± 5 J mol−1 K−1. The reaction kinetics for both steps were determined using the Kissinger method from DSC-TGA data to be 138 ± 12 kJ mol−1 and 98 ± 8 kJ mol−1 for step 1 and 2, respectively. Reversible hydrogenation over step 2, for 66 cycles at 670 °C under 20 bar of H2, determined the sorption capacity to be stable at 91% of the theoretical maximum of 1.1 wt% H2. A materials-based cost analysis evaluates the system at 9.2 US$ per kW hth, with an energy density of 1031 kJ kg−1

    Related items

    Showing items related by title, author, creator and subject.

    • Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
      Bellosta von Colbe, J.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, Craig ; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; Jensen, E.H.; Jensen, T.; Jepsen, J.; Klassen, T.; Lototskyy, M.V.; Manickam, K.; Montone, A.; Puszkiel, J.; Sartori, S.; Sheppard, Drew ; Stuart, A.; Walker, G.; Webb, C.J.; Yang, H.; Yartys, V.; Züttel, A.; Dornheim, M. (2019)
      Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for ...
    • Lithium imide systems for high temperature heat storage in concentrated solar thermal systems
      Nguyen, T.; Sheppard, Drew; Buckley, Craig (2017)
      Hydrogen is touted as one of the solutions for future energy requirements. Metal hydrides typically studied for their high hydrogen capacity can be used as a thermal storage system by taking advantage of their ...
    • Concentrating solar thermal heat storage using metal hydrides
      Harries, D.; Paskevicius, Mark; Sheppard, Drew; Price, T.; Buckley, Craig (2012)
      Increased reliance on solar energy conversion technologies will necessarily constitute a major plank of any forward global energy supply strategy. It is possible that solar photovoltaic (PV) technology and concentrating ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.