Show simple item record

dc.contributor.authorDesage, L.
dc.contributor.authorHumphries, Terry
dc.contributor.authorPaskevicius, Mark
dc.contributor.authorBuckley, Craig
dc.date.accessioned2025-01-21T13:01:08Z
dc.date.available2025-01-21T13:01:08Z
dc.date.issued2023
dc.identifier.citationDesage, L. and Humphries, T.D. and Paskevicius, M. and Buckley, C.E. 2023. Calcium hydride with aluminium for thermochemical energy storage applications. Sustainable Energy and Fuels. 8 (1): pp. 142-149.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96922
dc.identifier.doi10.1039/d3se01122d
dc.description.abstract

Thermochemical energy storage has the potential to unlock large-scale storage of renewable energy sources by integrating with power production facilities. Metal hydrides have high thermochemical energy storage densities through reversible hydrogenation. Particularly, calcium hydride presents remarkable properties to integrate with high-temperature systems. The addition of aluminium to calcium hydride enables lower operating temperatures below 700 °C. The CaH2-2Al system reacts through a two-step reaction mechanism, which was verified via in situ powder diffraction analysis. The thermodynamics of dehydrogenation have been determined for both dehydrogenation steps with step 1 having a ΔHdes = 79 ± 3 kJ mol−1 and ΔSdes = 113 ± 4 J mol−1 K−1, while step 2 has a ΔHdes = 99 ± 4 kJ mol−1 and ΔSdes = 128 ± 5 J mol−1 K−1. The reaction kinetics for both steps were determined using the Kissinger method from DSC-TGA data to be 138 ± 12 kJ mol−1 and 98 ± 8 kJ mol−1 for step 1 and 2, respectively. Reversible hydrogenation over step 2, for 66 cycles at 670 °C under 20 bar of H2, determined the sorption capacity to be stable at 91% of the theoretical maximum of 1.1 wt% H2. A materials-based cost analysis evaluates the system at 9.2 US$ per kW hth, with an energy density of 1031 kJ kg−1

dc.titleCalcium hydride with aluminium for thermochemical energy storage applications
dc.typeJournal Article
dcterms.source.volume8
dcterms.source.number1
dcterms.source.startPage142
dcterms.source.endPage149
dcterms.source.titleSustainable Energy and Fuels
dc.date.updated2025-01-21T13:01:07Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusIn process
curtin.facultyFaculty of Science and Engineering
curtin.facultyFaculty of Science and Engineering
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidHumphries, Terry [0000-0003-1015-4495]
curtin.contributor.orcidBuckley, Craig [0000-0002-3075-1863]
curtin.contributor.orcidPaskevicius, Mark [0000-0003-2677-3434]
curtin.contributor.researcheridBuckley, Craig [B-6753-2013]
curtin.contributor.researcheridPaskevicius, Mark [K-1638-2013]
dcterms.source.eissn2398-4902
curtin.contributor.scopusauthoridHumphries, Terry [12798136600]
curtin.contributor.scopusauthoridBuckley, Craig [56412440100] [7202815196]
curtin.contributor.scopusauthoridPaskevicius, Mark [23025599100]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record