Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells

    Access Status
    In process
    Authors
    He, S.
    Li, Z.
    Hu, X.
    Li, Q.
    Song, X.
    Wang, Y.
    Zhang, X.
    Zhong, H.
    Tian, Y.
    Jiang, San Ping
    Date
    2025
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    He, S. and Li, Z. and Hu, X. and Li, Q. and Song, X. and Wang, Y. and Zhang, X. et al. 2025. Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells. Journal of Power Sources. 642.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2025.236977
    ISSN
    0378-7753
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/97477
    Collection
    • Curtin Research Publications
    Abstract

    Perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e. La0.6Ca0.4Co0.2Fe0.8O3-δ (LCCF), the stability of the perovskite can be reinforced, however, at the cost of reduced catalytic activity. Herein, we adopt an effective A-site Ce doping strategy to modify the structure and chemistry of LCCF and therefore to boost its electrochemical performance, i.e. La0.6Ca0.4-xCexCo0.2Fe0.8O3-δ (Ce-LCCFx, x = 0.05–0.2). The results reveal that replacing Ca2+ with Ce4+ notably alters the oxygen vacancies concentration, Fe4+/Fe3+ and Co4+/Co3+ proportions in the perovskite. As a result, the thermal expansion coefficient of LCCF is drastically lowered to 12.6 × 10−6 K−1 upon x = 0.15 in Ce-LCCFx. Moreover, the single cell loaded with Ce-LCCF15 cathode demonstrates a superior maximum power density of 1.26 W cm−2 at 750 °C in H2. Interestingly, microstructure analysis suggests that abundant CeOx nanoparticles are exsolved in situ from the Ce-LCCF15 surfaces due to cathodic current polarization. The present study contributes to the understanding of the role of dopants in promoting the catalytic properties of cathode materials for SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways
      Xu, M.; Wang, Wei ; Liu, Y.; Zhong, Yijun ; Xu, Xiaomin ; Sun, Y.; Wang, J.; Zhou, W.; Shao, Zongping (2019)
      State-of-the-art dye-sensitized solar cells (DSSCs) usually use the noble and scarce platinum (Pt) cathode, which strongly limits the practical applications of DSSCs. Accordingly, low-cost, highly active, and stable ...
    • Synergistic effects of temperature and polarization on Cr poisoning of La0.6Sr0.4Co0.2Fe0.8O3-: δ solid oxide fuel cell cathodes
      Ni, N.; Wang, C.C.; Jiang, San Ping ; Skinner, S.J. (2019)
      La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) solid oxide fuel cell cathodes were poisoned by Cr at different temperatures and polarization conditions with a Cr-Fe alloy as the interconnect. Cr induced degradation was analysed by ...
    • Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis
      Dong, D.; Shao, X.; Hu, X.; Chen, K.; Xie, K.; Yu, L.; Ye, Z.; Yang, P.; Parkinson, G.; Li, Chun-Zhu (2016)
      Gas diffusion limitation within Ni/YSZ cathode supports of solid oxide electrolysis cells (SOECs) during steam electrolysis has been reported in previous studies. In this study, a microchanneled cathode support has been ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.