Array-Aided Multifrequency GNSS Ionospheric Sensing: Estimability and Precision Analysis
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must beobtained for all other uses, in any current or future media, including reprinting/republishing thismaterial for advertising or promotional purposes, creating new collective works, for resale orredistribution to servers or lists, or reuse of any copyrighted component of this work in otherworks.
Collection
Abstract
The dual-frequency Global Positioning System has proven to be an effective means of measuring the Earth's ionosphere and its total electron content (TEC). With the advent of multifrequency signals from more Global Navigation Satellite Systems (GNSSs), the opportunity arises to construct many more ionosphere-sensing combinations of GNSS data. With such diversity, various estimable ionospheric delays with differing interpretations (and of different precision) can be formed. How such estimable ionospheric delays should be interpreted, and the extent to which they contribute to the precision with which the unbiased TEC can be estimated, are the topics of this paper. Based on multifrequency GNSS code-only, phase-only, and phase-and-code data, we derive the closed-form solutions of different types of ionospheric observables that each can serve as input of an externally provided ionospheric model for TEC determination. Within such a general least-squares framework, we generalize the widely used phase-to-code levelling technique to its multifrequency version. We also show that only certain specific linear combinations of the observables contribute to the TEC solutions. As a further improvement of the multifrequency GNSS-derived TEC solution, we propose and study the usage of an array of GNSS antennas. Analytical solutions, supported by numerical examples, of this array-based concept are presented, together with a discussion on its relevance for TEC determination. This concerns the roles of time averaging and time differencing, of integer ambiguity resolution, and of the number of frequencies and number of array antennas in determining TEC.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Odijk, Dennis; Zhang, Baocheng; Khodabandeh, Amir; Odolinski, R.; Teunissen, Peter (2015)© 2015 Springer-Verlag Berlin Heidelberg The concept of integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) relies on appropriate network information for the parameters that are common between the ...
-
Deo, Manoj; El-Mowafy, Ahmed (2017)The availability of signals on three or more frequencies from multiple GNSS constellations provides opportunities for improving precise point positioning (PPP) convergence time and accuracy, compared to when using ...