Show simple item record

dc.contributor.authorKhodabandeh, A.
dc.contributor.authorTeunissen, Peter
dc.date.accessioned2017-01-30T11:15:49Z
dc.date.available2017-01-30T11:15:49Z
dc.date.created2016-07-17T19:30:37Z
dc.date.issued2016
dc.identifier.citationKhodabandeh, A. and Teunissen, P. 2016. Array-Aided Multifrequency GNSS Ionospheric Sensing: Estimability and Precision Analysis. IEEE Transactions on Geoscience and Remote Sensing. 54 (10): pp. 5895-5913.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/9939
dc.identifier.doi10.1109/TGRS.2016.2574809
dc.description.abstract

The dual-frequency Global Positioning System has proven to be an effective means of measuring the Earth's ionosphere and its total electron content (TEC). With the advent of multifrequency signals from more Global Navigation Satellite Systems (GNSSs), the opportunity arises to construct many more ionosphere-sensing combinations of GNSS data. With such diversity, various estimable ionospheric delays with differing interpretations (and of different precision) can be formed. How such estimable ionospheric delays should be interpreted, and the extent to which they contribute to the precision with which the unbiased TEC can be estimated, are the topics of this paper. Based on multifrequency GNSS code-only, phase-only, and phase-and-code data, we derive the closed-form solutions of different types of ionospheric observables that each can serve as input of an externally provided ionospheric model for TEC determination. Within such a general least-squares framework, we generalize the widely used phase-to-code levelling technique to its multifrequency version. We also show that only certain specific linear combinations of the observables contribute to the TEC solutions. As a further improvement of the multifrequency GNSS-derived TEC solution, we propose and study the usage of an array of GNSS antennas. Analytical solutions, supported by numerical examples, of this array-based concept are presented, together with a discussion on its relevance for TEC determination. This concerns the roles of time averaging and time differencing, of integer ambiguity resolution, and of the number of frequencies and number of array antennas in determining TEC.

dc.publisherIEEE Geoscience and Remote Sensing Society
dc.titleArray-Aided Multifrequency GNSS Ionospheric Sensing: Estimability and Precision Analysis
dc.typeJournal Article
dcterms.source.issn0196-2892
dcterms.source.titleIEEE Transactions on Geoscience and Remote Sensing
curtin.note

Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must beobtained for all other uses, in any current or future media, including reprinting/republishing thismaterial for advertising or promotional purposes, creating new collective works, for resale orredistribution to servers or lists, or reuse of any copyrighted component of this work in otherworks.

curtin.departmentDepartment of Spatial Sciences
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record