Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.

    Access Status
    Fulltext not available
    Authors
    Mooranian, A.
    Negrulj, R.
    Chen-Tan, N.
    Fakhoury, M.
    Arfuso, F.
    Jones, Franca
    Al-Salami, H.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mooranian, A. and Negrulj, R. and Chen-Tan, N. and Fakhoury, M. and Arfuso, F. and Jones, F. and Al-Salami, H. 2014. Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.Artificial Cells, Nanomedicine, and Biotechnology. [In Press].
    Source Title
    Artif Cells Nanomed Biotechnol
    DOI
    10.3109/21691401.2014.971806
    School
    Nanochemistry Research Institute
    URI
    http://hdl.handle.net/20.500.11937/13290
    Collection
    • Curtin Research Publications
    Abstract

    This study utilized the Seahorse Analyzer to examine the effect of the bile acid ursodeoxycholic acid (UDCA), on the morphology, swelling, stability, and size of novel microencapsulated ß-cells, in real-time. UDCA was conjugated with fluorescent compounds, and its partitioning within the microcapsules was examined using confocal microscopy. UDCA produced microcapsules with good morphology, better mechanical strength (p < 0.01), and reduced swelling properties (p < 0.01), but lower cell viability (p < 0.05) and cell count per microcapsule (p < 0.01). UDCA reduced the cells' biochemical activities, mitochondrial respiration, and energy production, post-microencapsulation. This is the first time biological functions of microencapsulated ß-cells have been analyzed in real-time.

    Related items

    Showing items related by title, author, creator and subject.

    • Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
      Mooranian, Armin; Negrulj, R.; Arfuso, Frank; Al-Salami, Hani (2014)
      Introduction: In a recent study, we confirmed good chemical and physical compatibility of microencapsulated pancreatic β-cells using a novel formulation of low viscosity sodium alginate (LVSA), Poly-L-Ornithine (PLO), and ...
    • Designing anti-diabetic ß-cells microcapsules using polystyrenic sulfonate, polyallylamine and a tertiary bile acid: Morphology, bioenergetics and cytokine analysis.
      Mooranian, A.; Negrulj, R.; Morahan, G.; Jamieson, E.; Al-Salami, Hani (2016)
      Purpose: Recently sodium alginate (SA)-poly-l-ornithine (PLO) microcapsules containing pancreatic β-cells that showed good morphology but low cell viability (<27%) was designed. In this study, two new polyelectrolytes, ...
    • Innovative Microcapsules for Pancreatic ß-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis
      Mooranian, Armin; Takechi, Ryu; Jamieson, E.; Morahan, G.; Al-Salami, Hani (2017)
      Purpose: Recently we demonstrated that microencapsulation of a murine pancreatic ß-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.