Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Exponential stability analysis and impulsive tracking control of uncertain time-delayed systems

    189939_189939.pdf (148.5Kb)
    Access Status
    Open access
    Authors
    Chen, Yuanqiang
    Xu, Honglei
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, Yuanqiang and Xu, Honglei. 2012. Exponential stability analysis and impulsive tracking control of uncertain time-delayed systems. Journal of Global Optimization 52: pp. 323-334.
    Source Title
    Journal of Global Optimization
    DOI
    10.1007/s10898-011-9669-2
    ISSN
    09255001
    Remarks

    The final publication is available at Springer via http://doi.org/10.1007/s10898-011-9669-2

    URI
    http://hdl.handle.net/20.500.11937/16604
    Collection
    • Curtin Research Publications
    Abstract

    In this paper, we study exponential stability and tracking control problems for uncertain time-delayed systems. First, sufficient conditions of exponential stability for a class of uncertain time-delayed systems are established by employing Lyapunov functional methods and algebraic matrix inequality techniques. Furthermore, tracking control problems are investigated in which an uncertain linear time-delayed system is used to track the reference system. Sufficient conditions for solvability of tracking control problems are obtained for the cases that the system state is measurable and non-measurable, respectively. When the state is measurable, we design an impulsive control law to achieve the tracking performance. When the state information is not directly available from measurement, an impulsive control law based on the measured output will be used. Finally, numerical examples are presented to illustrate the effectiveness and usefulness of our results.

    Related items

    Showing items related by title, author, creator and subject.

    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • Stability and control of switched systems with impulsive effects
      Xu, Honglei (2009)
      Switched systems belong to a special class of hybrid systems, which consist of a collection of subsystems described by continuous dynamics together with a switching rule that specifies the switching between the subsystems. ...
    • Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture
      Yuan, J.; Zhang, X.; Liu, Chongyang; Chang, L.; Xie, J.; Feng, E.; Yin, H.; Xiu, Z. (2016)
      Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.