On Uplink-Downlink Duality of Multi-Hop MIMO Relay Channel
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
For two-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay systems, the uplink-downlink duality has been recently investigated. In this paper, we establish the duality between uplink and downlink multi-hop AF-MIMO relay channels with any number of hops and any number of antennas at each node, which is a further generalization of several previously established results. We show that in the downlink relay system, signal-to-interference-noise ratios (SINRs) identical to those in the uplink relay system, and vice versa, can be achieved by two approaches. First, with the same total network transmission power constraint, one simply applies Hermitian transposed uplink relay amplifying matrices at relay nodes in the downlink system.Second, with transmission power constraint at each node of the relay network, one can use scaled and Hermitian transposed uplink relay amplifying matrices in the downlink system, with scaling factors obtained by switching power constraints at different nodes of the uplink system. As an application of the uplink-downlink duality, we propose an optimal design of the source precoding matrix and relay amplifying matrices for multi-hop MIMO relay system with a dirty paper coding (DPC) transmitter at the source node.
Related items
Showing items related by title, author, creator and subject.
-
Khandaker, Muhammad Ruhul Amin (2012)The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can ...
-
Cirik, A.; Khandaker, Muhammad; Rong, Yue; Hua, Y. (2014)In this paper, the uplink and downlink sum mean-squared error (MSE) duality for multi-hop amplify-and-forward (AF) multiple-input multiple-output relay channels is established, which is a generalization of several sum-MSE ...
-
Khandaker, Muhammad; Rong, Yue (2010)In this paper, we address the optimal source and relay matrices design issue for a multiple-input multiple-output(MIMO) relay network using the dirty paper coding (DPC) scheme at the source node. The aim is to minimize ...