Effect of initial pH on hydrothermal decomposition of cellobiose under weakly acidic conditions
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The paper reports the cellobiose hydrothermal decomposition at 200–250 °C under non-catalytic (with an initial pH close to 7) and weakly acidic conditions (with an initial pH of 4–6). It was found cellobiose decomposition under both non-catalytic and weakly acidic conditions follows similar primary decomposition pathways, i.e., isomerization and hydrolysis reactions being the main primary reactions. However, cellobiose decomposition under acidic conditions decreases the selectivities of isomerization reactions but increases the selectivity of hydrolysis reaction. While the rate constants of isomerization reactions under various pH conditions are found to be similar, that of hydrolysis reaction increases significantly with reducing the initial pH of the solution. Therefore, the acceleration of cellobiose decomposition under acidic conditions is mainly due to the increased contribution of hydrolysis reaction. Further analysis suggests that the rate constant of hydrolysis reaction is dependent on the hydrogen ion concentration of the solution at reaction temperature. A kinetic model was then developed, considering the isomerization and hydrolysis reactions. The model can well predict the cellobiose hydrothermal decomposition under various initial pH conditions at low temperatures (i.e., <225 °C). However, the model underestimates the rate constant of cellobiose hydrothermal decomposition at higher temperatures (i.e., 250 °C), suggesting the increased contribution of other reactions (e.g., reversion reactions) under the conditions.
Related items
Showing items related by title, author, creator and subject.
-
Shafie, Z.M.; Yu, Yun; Wu, Hongwei (2014)This paper reports a systematic investigation on the primary decomposition mechanism and kinetics of cellobiose under hydrothermal conditions at 200-275 °C and a wide initial concentration range of 10-10,000 mg L-1. ...
-
Yu, Yun; Shafie, Zainun; Wu, Hongwei (2013)This paper reports an investigation on the fundamental reaction mechanism of cellobiose decomposition in hotcompressed water (HCW) using a continuous reactor system at 225-275 °C. The importance of isomerization reactions ...
-
Song, Bing (2018)This PhD thesis reports new knowledge on hydrothermal decomposition mechanisms of fructose, glucose, cellobiose, cellulose and lignocellulosic biomass in hot-compressed water/gamma-valerolactone (GVL) mixtures under ...