Insights into the Primary Decomposition Mechanism of Cellobiose under Hydrothermal Conditions
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper reports a systematic investigation on the primary decomposition mechanism and kinetics of cellobiose under hydrothermal conditions at 200-275 °C and a wide initial concentration range of 10-10,000 mg L-1. Isomerization of cellobiose to cellobiulose (glucosyl-fructose) and glucosyl-mannose dominates the primary reactions of cellobiose decomposition, contributing to 71-93% of cellobiose decomposition depending on reaction conditions. In contrast, cellobiosehydrolysis to glucose makes only limited contributions (6-27% depending on reaction conditions) to the primary decomposition of cellobiose. This indicates that hydroxyl ions have a more significant effect to catalyze the isomerization reactions to produce cellobiulose and glucosyl-mannose. The catalytic effect of hydronium ions is weak probably because of the high affinity ofhydronium ions for water molecules, which reduces the availability of hydronium ions for catalyzing the hydrolysis reaction. At increased temperatures, the affinity of hydronium ions for water molecules decreases because of the weakened hydrogen bonds in water, leading to an increase in the selectivity of the acid-catalyzed hydrolysis reaction. A higher initial cellobiose concentrationalso promotes hydrolysis reaction due to the formation of acidic products at the early stage of cellobiose decomposition. As a result of the reduced molar ratio of ion product to cellobiose, the activation energies of both isomerization and hydrolysis reactions increase with an increase in initial concentration, leading to an increase in the apparent activation energy of cellobiosehydrothermal conversion.
Related items
Showing items related by title, author, creator and subject.
-
Mohd Shafie, Zainun; Yu, Yun; Wu, Hongwei (2015)The paper reports the cellobiose hydrothermal decomposition at 200–250 °C under non-catalytic (with an initial pH close to 7) and weakly acidic conditions (with an initial pH of 4–6). It was found cellobiose decomposition ...
-
Yu, Yun; Shafie, Zainun; Wu, Hongwei (2013)This paper reports an investigation on the fundamental reaction mechanism of cellobiose decomposition in hotcompressed water (HCW) using a continuous reactor system at 225-275 °C. The importance of isomerization reactions ...
-
Yu, Yun; Mohd Shafie, Zainun; Wu, Hongwei (2015)This paper reports a systematic study on the catalytic effect of alkali and alkaline earth metal (AAEM) chlorides on cellobiose decomposition in hot-compressed water (HCW) at 200–275 °C. The AAEM chlorides catalyze the ...