Cellobiose Decomposition in Hot-Compressed Water: Importance of Isomerization Reactions
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This paper reports an investigation on the fundamental reaction mechanism of cellobiose decomposition in hotcompressed water (HCW) using a continuous reactor system at 225-275 °C. The importance of isomerization reactions to form two cellobiose isomers (i.e., cellobiulose and glucosyl-mannose) as the primary reaction products is clearly demonstrated under the reaction conditions, using a high-performance anion exchange chromatography with pulsed amperometric detection and mass spectrometry (HPAEC-PAD-MS). The results also confirm another two primary reactions take place during cellobiose decomposition in HCW: retro-aldol condensation reaction to produce glucosyl-erythrose (GE) and glycolaldehyde, and hydrolysis reaction to produce glucose. The data show that isomerization and retro-aldol condensation are the dominant primary reactions while hydrolysis of cellobiose is only a minor primary reaction (accounting for ~10-20% of cellobiose decomposition depending on reaction temperature). The results indicate that the reaction solution becomes acidic at the early stage of cellobiose decomposition, most likely due to the formation of organic acids, resulting in the subsequent reactions exhibiting more characteristics of acid-catalyzed reactions. The results further suggest that the formed acidic condition has little catalytic effects onthe primary reactions of cellobiose decomposition, but is effective in catalyzing secondary reactions of various reaction intermediates such as hydrolysis and dehydration reactions to form glucose and 5-HMF, respectively.
Related items
Showing items related by title, author, creator and subject.
-
Shafie, Z.M.; Yu, Yun; Wu, Hongwei (2014)This paper reports a systematic investigation on the primary decomposition mechanism and kinetics of cellobiose under hydrothermal conditions at 200-275 °C and a wide initial concentration range of 10-10,000 mg L-1. ...
-
Mohd Shafie, Zainun; Yu, Yun; Wu, Hongwei (2015)The paper reports the cellobiose hydrothermal decomposition at 200–250 °C under non-catalytic (with an initial pH close to 7) and weakly acidic conditions (with an initial pH of 4–6). It was found cellobiose decomposition ...
-
Yu, Yun; Mohd Shafie, Zainun; Wu, Hongwei (2015)This paper reports a systematic study on the catalytic effect of alkali and alkaline earth metal (AAEM) chlorides on cellobiose decomposition in hot-compressed water (HCW) at 200–275 °C. The AAEM chlorides catalyze the ...