All traveling wave exact solutions of two kinds of nonlinear evolution equations
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
In this article, we employ the complex method to obtain all meromorphic solutions of complex Korteweg–de Vries (KdV) equation and the modified Benjamin–Bona–Mahony (mBBM) equation at first, then find out all traveling wave exact solutions of the Eqs. (KdV) and (mBBM). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic solutions of the Eqs. (KdV) and (mBBM) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions w2r,2(z)w2r,2(z) and simply periodic solutions w2s,1(z)w2s,1(z) which are not only new but also not degenerated successively by the elliptic function solutions. We give some computer simulations to illustrate our main results.
Related items
Showing items related by title, author, creator and subject.
-
Lin, Qun (2009)We develop well-posedness theory and analytical and numerical solution techniques for Boussinesq-type equations. Firstly, we consider the Cauchy problem for a generalized Boussinesq equation. We show that under suitable ...
-
Aruchunan, Elayaraja; Sulaiman, J. (2010)This research purposely brought up to solve complicated equations such as partial differential equations, integral equations, Integro-Differential Equations (IDE), stochastic equations and others. Many physical phenomena ...
-
Meng, F.; Zhang, L.; Wu, Yong Hong; Yuan, W. (2015)In this article, we employ the complex method to obtain all meromorphic exact solutions of complex Klein–Gordon (KG) equation, modified Korteweg-de Vries (mKdV) equation, and the generalized Boussinesq (gB) equation at ...