Show simple item record

dc.contributor.authorHuang, Y.
dc.contributor.authorYuan, W.
dc.contributor.authorWu, Yong Hong
dc.date.accessioned2017-01-30T12:12:52Z
dc.date.available2017-01-30T12:12:52Z
dc.date.created2014-04-16T20:00:56Z
dc.date.issued2014
dc.identifier.citationHuang, Yong and Yuan, Wenjun and Wu, Yonghong. 2014. All traveling wave exact solutions of two kinds of nonlinear evolution equations. Applied Mathematics and Computations. 235: pp. 148-156.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/19254
dc.identifier.doi10.1016/j.amc.2014.02.071
dc.description.abstract

In this article, we employ the complex method to obtain all meromorphic solutions of complex Korteweg–de Vries (KdV) equation and the modified Benjamin–Bona–Mahony (mBBM) equation at first, then find out all traveling wave exact solutions of the Eqs. (KdV) and (mBBM). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic solutions of the Eqs. (KdV) and (mBBM) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions w2r,2(z)w2r,2(z) and simply periodic solutions w2s,1(z)w2s,1(z) which are not only new but also not degenerated successively by the elliptic function solutions. We give some computer simulations to illustrate our main results.

dc.publisherElsevier Inc.
dc.subjectExact solution
dc.subjectMeromorphic function
dc.subjectElliptic function
dc.subjectThe Korteweg–de Vries equation
dc.subjectThe modified Benjamin–Bona–Mahony equation
dc.titleAll traveling wave exact solutions of two kinds of nonlinear evolution equations
dc.typeJournal Article
dcterms.source.volume235
dcterms.source.startPage148
dcterms.source.endPage156
dcterms.source.issn0096-3003
dcterms.source.titleApplied Mathematics and Computations
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record