Show simple item record

dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorSchmid, R.
dc.date.accessioned2017-01-30T12:13:12Z
dc.date.available2017-01-30T12:13:12Z
dc.date.created2014-06-25T20:00:16Z
dc.date.issued2014
dc.identifier.citationNtogramatzidis, L. and Schmid, R. 2014. Robust eigenstructure assignment in geometric control theory. SIAM Journal on Control and Optimization. 52 (2): pp. 960-986.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/19332
dc.identifier.doi10.1137/130912906
dc.description.abstract

In this paper we employ the Rosenbrock system matrix pencil for the computation of output-nulling subspaces of linear time-invariant systems which appear in the solution of a large number of control and estimation problems. We also consider the problem of finding friends of these output-nulling subspaces, i.e., the feedback matrices that render such subspaces invariant with respect to the closed-loop map and output-nulling with respect to the output map, and which at the same time deliver a robust closed-loop eigenstructure. We show that the methods presented in this paper offer considerably more robust eigenstructure assignment than the other commonly used methods and algorithms.

dc.publisherSociety for Industrial and Applied Mathematics
dc.subjectgeometric control
dc.subjectfriends
dc.subjectoutput-nulling subspaces
dc.subjectRosen-brock matrix pencil
dc.subjectcontrolled invariance
dc.titleRobust eigenstructure assignment in geometric control theory
dc.typeJournal Article
dcterms.source.volume52
dcterms.source.number2
dcterms.source.startPage960
dcterms.source.endPage986
dcterms.source.issn0363-0129
dcterms.source.titleSIAM Journal on Control and Optimization
curtin.note

© 2014, Society for Industrial and Applied Mathematics

curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record