Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine ß-cell Survival and the Inflammatory Response

    Access Status
    Fulltext not available
    Authors
    Mooranian, A.
    Negrulj, R.
    Al-Salami, Hani
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mooranian, A. and Negrulj, R. and Al-Salami, H. 2016. Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine ß-cell Survival and the Inflammatory Response. BioNanoScience. 6 (2): pp. 103-109.
    Source Title
    BioNanoScience
    DOI
    10.1007/s12668-016-0198-9
    ISSN
    2191-1630
    School
    School of Pharmacy
    URI
    http://hdl.handle.net/20.500.11937/19999
    Collection
    • Curtin Research Publications
    Abstract

    In past studies using hydrogel-polyelectrolyte matrix and different bile acid excipients, we microencapsulated pancreatic ß-cells using various methods, and the microcapsules were mechanically stable, displayed good morphological characteristics with good physico-chemical compatibility but had limited cell viability and poor cell survival. Using bile acids, cell survival increased but overall remained limited. Thus, this study aimed to test different microencapsulating methods and examine the effects of the primary hydrophobic bile acid, chenodeoxycholic acid (CDCA), on ß-cell microcapsules, in terms of morphology and cell function. Using the polymer sodium alginate (SA) and the co-polymer poly-l-ornithine (PLO), in 10:1 ratio, two microcapsules were made, one without CDCA and one with CDCA. During the microencapsulation process, polymer flow rate and culture media flow rate were screened (0.1–1.5 mL/min) for most uniform microcapsule. Pancreatic ß-cells (NIT-1) were microencapsulated and tested for morphology, formulation physico-chemical compatibility, stability, surface topography and chemical composition. Encapsulated cell viability, metabolism, respiration, bioenergetics, biological activity and the inflammatory profile were also measured. A polymer flow rate of 0.8 mL/min accompanied by 0.6 mL/min media flow rate were found to produce the most uniform microcapsules using 10:1 formulation ratio. The microcapsules showed poor cell viability which was improved significantly after CDCA incorporation. CDCA also enhanced insulin secretion (p < 0.01), metabolism, respiration and bioenergetics (p < 0.01) and significantly reduced the inflammatory response. These benefits were attained without compromising microcapsule size or stability. A polymer flow rate of 0.8 mL/min and a media flow rate of 0.6 mL/min produced good microcapsules when using SA and PLO in 10:1 ratio, and the incorporation of the primary bile acid, chenodeoxycholic acid, enhanced microcapsule stability and significantly increased cell survival and reduced inflammation which suggests potential applications in ß-cell microencapsulation and transplantation.

    Related items

    Showing items related by title, author, creator and subject.

    • New biotechnological microencapsulating methodology utilizing individualized gradient-screened jet laminar flow techniques for pancreatic ß-cell delivery: bile acids support cell energy-generating mechanisms
      Mooranian, A.; Negrulj, R.; Takechi, R.; Jamieson, E.; Morahan, G.; Al-Salami, Hani (2017)
      In previous studies, we developed a new technique (ionic gelation vibrational jet flow; IGVJF) in order to encapsulate pancreatic β-cells, for insulin in vivo delivery, and diabetes treatment. The fabricated microcapsules ...
    • Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from ß-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid
      Mooranian, A.; Negrulj, R.; Takechi, Ryu; Jamieson, E.; Morahan, G.; Al-Salami, Hani (2017)
      Introduction: We have shown that incorporation of the hydrophilic bile acid, ursodeoxycholic acid, into ß-cell microcapsules exerted positive effects on microcapsules’ morphology and size, but these effects were excipient ...
    • Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic ?-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes
      Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani (2016)
      © 2016. Springer Science+Business Media New York.Introduction: The secondary bile acid, deoxycholic acid (DCA), has been shown to exert membrane stabilising effects on a pH sensitive delivery system for the oral delivery ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.