Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from ß-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid

    Access Status
    Fulltext not available
    Authors
    Mooranian, A.
    Negrulj, R.
    Takechi, Ryu
    Jamieson, E.
    Morahan, G.
    Al-Salami, Hani
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mooranian, A. and Negrulj, R. and Takechi, R. and Jamieson, E. and Morahan, G. and Al-Salami, H. 2017. Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from ß-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid. Cellular and Molecular Bioengineering. 11 (1): pp. 65–75.
    Source Title
    Cellular and Molecular Bioengineering
    DOI
    10.1007/s12195-017-0510-y
    ISSN
    1865-5025
    School
    School of Public Health
    URI
    http://hdl.handle.net/20.500.11937/59335
    Collection
    • Curtin Research Publications
    Abstract

    Introduction: We have shown that incorporation of the hydrophilic bile acid, ursodeoxycholic acid, into ß-cell microcapsules exerted positive effects on microcapsules’ morphology and size, but these effects were excipient and method dependent. Cell viability remained low which suggests low octane-water solubility and formation of highly hydrophilic dispersion, which resulted in low lipophilicity dispersion and compromised cellular permeation of the incorporated bile acid. Thus, this study aimed at investigating various microencapsulating methodologies using highly lipophilic bile acid (LPBA), in order to optimise viability and functions of microencapsulated ß-cells. Methods: Four different types of microcapsules were produced with (test) and without (control) LPBA, totalling eight different microcapsules. Microencapsulating methodologies were screened for best microcapsule-cell functions and microencapsulating processes were examined in terms of frequency, formulation flow, total bath-gelation time and cellular concurrent stream-integration rate, cell-viability, insulin production and inflammatory profile. Results: Optimum biotechnological processes include formation frequency (Hz) of 2350, formulation flow (ml/min) of 1.2, total gelation time (min) of 18 and cellular concurrent stream-integration rate (ml/min) of 0.7. In all formulations, LPBA consistently improved cell viability, insulin production, mitochondrial activities and ameliorated inflammation. Conclusion: The deployed biotechnological processes and LPBA optimised formation and functions of ß-cell microcapsules, which suggests potential applications in diabetes mellitus via the creation of more stable ß-cell microcapsules capable of delivering adequate levels of insulin to control glycaemia and potentially curing diabetes.

    Related items

    Showing items related by title, author, creator and subject.

    • Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine ß-cell Survival and the Inflammatory Response
      Mooranian, A.; Negrulj, R.; Al-Salami, Hani (2016)
      In past studies using hydrogel-polyelectrolyte matrix and different bile acid excipients, we microencapsulated pancreatic ß-cells using various methods, and the microcapsules were mechanically stable, displayed good ...
    • Biological Assessments of Encapsulated Pancreatic ß-Cells: Their Potential Transplantation in Diabetes
      Mooranian, Armin; Negrulj, Rebecca; Jamieson, E.; Morahan, G.; Al-Salami, Hani (2016)
      © 2016. Biomedical Engineering Society. Microencapsulation of pancreatic islets has been considered as a promising method for cell transplantation and diabetes treatment. However, in vivo trials to date have been hampered ...
    • The effects of Ionic Gelation- Vibrational Jet Flow technique in fabrication of microcapsules incorporating ß-cell: applications in Type-1 Diabetes
      Mooranian, A.; Negrulj, R.; Al-Salami, Hani (2017)
      BACKGROUND: In recent studies, we have incorporated bile acid and polyelectrolytes into pancreatic ß-cell microcapsules and examined their cell viability and microcapsule morphology. Cell viability remained low post ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.