Show simple item record

dc.contributor.authorZhang, Tongua
dc.contributor.authorZang, Hong
dc.contributor.authorTade, Moses O.
dc.date.accessioned2017-01-30T12:45:02Z
dc.date.available2017-01-30T12:45:02Z
dc.date.created2014-01-12T20:01:12Z
dc.date.issued2013
dc.identifier.citationZhang, Tonghua and Zang, Hong and Tade, Moses O. 2013. Bifurcations of limit cycles for a perturbed cubic system with double figure eight loop. International Journal of Bifurcation and Chaos. 23 (4): 12 pages.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/24791
dc.identifier.doi10.1142/S0218127413500673
dc.description.abstract

This paper is concerned with the distribution and number of limit cycles for a cubic Hamiltonian system under cubic perturbation. The fact that there exist seven limit cycles is proved. The different distributions of limit cycles are given by using the methods of bifurcation theory and qualitative analysis, and the distributions of seven limit cycles are newly established.

dc.publisherWorld Scientific Publishing
dc.subjectHamiltonian system
dc.subjectperturbation
dc.subjectlimit cycles
dc.subjectstability
dc.subjectHomoclinic bifurcation
dc.subjectheteroclinic bifurcation
dc.titleBifurcations of limit cycles for a perturbed cubic system with double figure eight loop
dc.typeJournal Article
dcterms.source.volume23: 1350067
dcterms.source.issn02181274
dcterms.source.titleInternational Journal of Bifurcation and Chaos
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record