Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Quantified,multi-scale X-ray fluorescence element mapping using the Maia detector array: Application to mineral deposit studies

    Access Status
    Fulltext not available
    Authors
    Fisher, L.
    Fougerouse, D.
    Cleverley, J.
    Ryan, C.
    Micklethwaite, S.
    Halfpenny, Angela
    Hough, R.
    Gee, M.
    Paterson, D.
    Howard, D.
    Spiers, K.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fisher, L. and Fougerouse, D. and Cleverley, J. and Ryan, C. and Micklethwaite, S. and Halfpenny, A. and Hough, R. et al. 2014. Quantified, multi-scale X-ray fluorescence element mapping using the Maia detector array: Application to mineral deposit studies. Mineralium Deposita. 50 (6): pp. 665-674.
    Source Title
    Mineralium Deposita
    DOI
    10.1007/s00126-014-0562-z
    ISSN
    0026-4598
    School
    Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/25400
    Collection
    • Curtin Research Publications
    Abstract

    The Maia large solid-angle detector array and imaging system is capable of collecting high-resolution images of up to ~100 M pixels in size with dwell times of less than 0.2 ms per pixel and thus it is possible to document variation in textures associated with trace element chemistry by collecting quantified elemental maps of geological samples on the scale of entire thin sections in a short time frame (6–8 hr). The analysis is nondestructive and allows variation to be recognised on a centimetre scale while also recognising zonations at the micron scale.Studies of ore systems require microanalysis of samples to collect information on mineral chemistry in order to understand physiochemical conditions during ore genesis and alteration. Such studies contribute to the debate on whether precious metals are remobilised or introduced in multiple hydrothermal events. In this study we demonstrate the microanalytical capabilities of the Maia large solid-angle detector array and imaging system on the X-ray fluorescence microscopy beamline at the Australian Synchrotron to provide data for these studies. We present a series of case studies from orogenic gold deposits that illustrate the power of the Maia detector for constraining chemical zonations in sulphides and associated alteration minerals, which can be used to decipher ore-forming processes associated with gold deposition. A series of large-area (<7 cm2) elemental maps were collected with 2 to 4 μm pixel size using the Maia detector array. The data was processed using the GeoPIXE™ software package which allows variation in trace, minor and major element chemistry to be visualised in element maps. These maps are used to target further investigation with bulk spectra extracted and fitted for specific mineral grains and transects drawn through regions of interest. Analysis using the Maia detector offers a complementary method to map element distribution in geological samples that is both relatively fast and has a low detection limit for many elements of interest.

    Related items

    Showing items related by title, author, creator and subject.

    • Quantified, whole section trace element mapping of carbonaceous chondrites by Synchrotron X-ray Fluorescence Microscopy: 1. CV meteorites
      Dyl, Kathryn; Cleverley, J.; Bland, Phil; Ryan, C.; Fisher, L.; Hough, R. (2014)
      We present the application of a new synchrotron-based technique for rapid mapping of trace element distributions across large areas of the CV3 meteorites Allende and Vigarano. This technique utilizes the Australian ...
    • Maia X-ray fluorescence imaging: Capturing detail in complex natural samples
      Ryan, Chris; Siddons, D.; Kirkham, R.; Li, Z.; De Jonge, M.; Paterson, D.; Kuczewski, A.; Howard, D.; Dunn, P.; Falkenberg, G.; Boesenberg, U.; De Geronimo, G.; Fisher, L.; Halfpenny, A.; Lintern, M.; Lombi, E.; Dyl, K.; Jensen, M.; Moorhead, G.; Cleverley, J.; Hough, R.; Godel, B.; Barnes, S.; James, S.; Spiers, K.; Alfeld, M.; Wellenreuther, G.; Vukmanovic, Z.; Borg, S. (2014)
      Motivated by the challenge of capturing complex hierarchical chemical detail in natural material from a wide range of applications, the Maia detector array and integrated realtime processor have been developed to acquire ...
    • Polycrystalline materials analysis using the Maia pixelated energy-dispersive X-ray area detector
      Kirkwood, H.; de Jonge, M.; Howard, D.; Ryan, C.; van Riessen, G.; Hofmann, F.; Rowles, Matthew; Paradowska, A.; Abbey, B. (2017)
      Elemental, chemical, and structural analysis of polycrystalline materials at the micron scale is frequently carried out using microfocused synchrotron X-ray beams, sometimes on multiple instruments. The Maia pixelated ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.