Show simple item record

dc.contributor.authorLi, S.
dc.contributor.authorTeo, Kok Lay
dc.contributor.authorYang, X.
dc.date.accessioned2017-01-30T12:55:28Z
dc.date.available2017-01-30T12:55:28Z
dc.date.created2014-10-28T02:31:41Z
dc.date.issued2005
dc.identifier.citationLi, S. and Teo, K.L. and Yang, X. 2005. Second-Order Directional Derivatives of Spectral Functions. Computers and Mathematics with Applications. 50 (5-6): pp. 947-955.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/26829
dc.identifier.doi10.1016/j.camwa.2004.11.021
dc.description.abstract

A spectral function of a symmetric matrix X is a function which depends only on the eigenvalues of X, λ1 (X) ≥ λ2(X) ≥≥ λn (X), and may be written as ƒ (λ1 (X), λ2(X), , λn (X)) for some symmetric function ƒ. In this paper, we assume that ƒ is a C1,1 function and discuss second-order directional derivatives of such a spectral function. We obtain an explicit expression of second-order directional derivative for the spectral function.

dc.publisherPergamon
dc.titleSecond-Order Directional Derivatives of Spectral Functions
dc.typeJournal Article
dcterms.source.volume50
dcterms.source.startPage947
dcterms.source.endPage955
dcterms.source.issn08981221
dcterms.source.titleComputers and Mathematics with Applications
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record