Second-Order Directional Derivatives of Spectral Functions
dc.contributor.author | Li, S. | |
dc.contributor.author | Teo, Kok Lay | |
dc.contributor.author | Yang, X. | |
dc.date.accessioned | 2017-01-30T12:55:28Z | |
dc.date.available | 2017-01-30T12:55:28Z | |
dc.date.created | 2014-10-28T02:31:41Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Li, S. and Teo, K.L. and Yang, X. 2005. Second-Order Directional Derivatives of Spectral Functions. Computers and Mathematics with Applications. 50 (5-6): pp. 947-955. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/26829 | |
dc.identifier.doi | 10.1016/j.camwa.2004.11.021 | |
dc.description.abstract |
A spectral function of a symmetric matrix X is a function which depends only on the eigenvalues of X, λ1 (X) ≥ λ2(X) ≥≥ λn (X), and may be written as ƒ (λ1 (X), λ2(X), , λn (X)) for some symmetric function ƒ. In this paper, we assume that ƒ is a C1,1 function and discuss second-order directional derivatives of such a spectral function. We obtain an explicit expression of second-order directional derivative for the spectral function. | |
dc.publisher | Pergamon | |
dc.title | Second-Order Directional Derivatives of Spectral Functions | |
dc.type | Journal Article | |
dcterms.source.volume | 50 | |
dcterms.source.startPage | 947 | |
dcterms.source.endPage | 955 | |
dcterms.source.issn | 08981221 | |
dcterms.source.title | Computers and Mathematics with Applications | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Open access via publisher |