Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Cr doping effect in B-site of La0.75Sr0.25MnO 3 on its phase stability and performance as an SOFC anode

    Access Status
    Fulltext not available
    Authors
    Zheng, Y.
    Ran, R.
    Shao, Zongping
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zheng, Y. and Ran, R. and Shao, Z. 2009. Cr doping effect in B-site of La0.75Sr0.25MnO 3 on its phase stability and performance as an SOFC anode. Rare Metals. 28 (4): pp. 361-366.
    Source Title
    Rare Metals
    DOI
    10.1007/s12598-009-0072-9
    ISSN
    1001-0521
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/2736
    Collection
    • Curtin Research Publications
    Abstract

    La0.75Sr0.25Cr y Mn1-y O 3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO 3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y = 0.4, the basic perovskite structure under the anode operating condition was sustained. a cell with 0.5-mm-thick scandia-stabilized zirconia electrolyte and La 0.75Sr0.25Cr y Mn1-y O3 anode delivered a power density of ~15 mW•cm-2 at 850°C. © 2009 Journal Publishing Center of University of Science and Technology Beijing and Springer-Verlag GmbH.

    Related items

    Showing items related by title, author, creator and subject.

    • Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas
      Wang, F.; Wang, Wei; Ran, R.; Tade, Moses; Shao, Zongping (2014)
      Al2O3 and SnO2 additives are introduced into the Ni–YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, ...
    • Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
      Song, Y.; Wang, W.; Qu, J.; Zhong, Y.; Yang, G.; Zhou, W.; Shao, Zongping (2018)
      The poor sulfur tolerance of conventional nickel cermet anodes is particularly concerning for solid oxide fuel cell technology. Herein, we report an innovative anode composed of a samaria-doped ceria (SDC) scaffold and a ...
    • Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
      Wang, Wei; Qu, J.; Zhao, B.; Yang, G.; Shao, Zongping (2015)
      Solid oxide fuel cells (SOFCs), which directly convert chemical energy into electricity, have several advantages, such as fuel flexibility and low emissions. Unfortunately, the performance and stability of SOFCs with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.