Show simple item record

dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorCantoni, M.
dc.contributor.authorYang, R.
dc.date.accessioned2017-01-30T13:07:22Z
dc.date.available2017-01-30T13:07:22Z
dc.date.created2014-09-09T20:01:03Z
dc.date.issued2008
dc.identifier.citationNtogramatzidis, L. and Cantoni, M. and Yang, R. 2008. A geometric theory for 2-D systems including notions of stabilisability. Multidimensional Systems and Signal Processing. 19 (3-4): pp. 449-475.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/28780
dc.identifier.doi10.1007/s11045-007-0046-8
dc.description.abstract

In this paper we consider the problem of internally and externally stabilising controlled invariant and output-nulling subspaces for two-dimensional (2-D) Fornasini–Marchesini models, via static feedback. A numerically tractable procedure for computing a stabilising feedback matrix is developed via linear matrix inequality techniques. This is subsequently applied to solve, for the first time, various 2-D disturbance decoupling problems subject to a closed-loop stability constraint.

dc.publisherSpringer Netherlands
dc.subject2-D Fornasini–Marchesini models
dc.subjectDisturbance decoupling problems
dc.subjectInternal/external stabilisation
dc.subjectOutput-nulling subspaces
dc.subjectControlled invariance
dc.titleA geometric theory for 2-D systems including notions of stabilisability
dc.typeJournal Article
dcterms.source.volume19
dcterms.source.number3-4
dcterms.source.startPage449
dcterms.source.endPage475
dcterms.source.issn0923-6082
dcterms.source.titleMultidimensional Systems and Signal Processing
curtin.note

The original publication is available at: http://www.springerlink.com

curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record