A geometric theory for 2-D systems including notions of stabilisability
dc.contributor.author | Ntogramatzidis, Lorenzo | |
dc.contributor.author | Cantoni, M. | |
dc.contributor.author | Yang, R. | |
dc.date.accessioned | 2017-01-30T13:07:22Z | |
dc.date.available | 2017-01-30T13:07:22Z | |
dc.date.created | 2014-09-09T20:01:03Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Ntogramatzidis, L. and Cantoni, M. and Yang, R. 2008. A geometric theory for 2-D systems including notions of stabilisability. Multidimensional Systems and Signal Processing. 19 (3-4): pp. 449-475. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/28780 | |
dc.identifier.doi | 10.1007/s11045-007-0046-8 | |
dc.description.abstract |
In this paper we consider the problem of internally and externally stabilising controlled invariant and output-nulling subspaces for two-dimensional (2-D) Fornasini–Marchesini models, via static feedback. A numerically tractable procedure for computing a stabilising feedback matrix is developed via linear matrix inequality techniques. This is subsequently applied to solve, for the first time, various 2-D disturbance decoupling problems subject to a closed-loop stability constraint. | |
dc.publisher | Springer Netherlands | |
dc.subject | 2-D Fornasini–Marchesini models | |
dc.subject | Disturbance decoupling problems | |
dc.subject | Internal/external stabilisation | |
dc.subject | Output-nulling subspaces | |
dc.subject | Controlled invariance | |
dc.title | A geometric theory for 2-D systems including notions of stabilisability | |
dc.type | Journal Article | |
dcterms.source.volume | 19 | |
dcterms.source.number | 3-4 | |
dcterms.source.startPage | 449 | |
dcterms.source.endPage | 475 | |
dcterms.source.issn | 0923-6082 | |
dcterms.source.title | Multidimensional Systems and Signal Processing | |
curtin.note |
The original publication is available at: | |
curtin.accessStatus | Open access |