Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/. Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Copyright © 2012 S. Debnath, Z. Oo, M. Rahman, M. Maleque, and C. Tan
Collection
Abstract
Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.
Related items
Showing items related by title, author, creator and subject.
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Pramanik, Alokesh (2016)The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 ...
-
Hakami, F.; Pramanik, Alokesh; Basak, A. (2017)Higher tool wear and inferior surface quality of the specimens during machining restrict metal matrix composites' application in many areas in spite of their excellent properties. The researches in this field are not well ...