Fibre-Reinforced Geopolymer Composites
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISBN
Collection
Abstract
Concrete is brittle and has low tensile and flexural strength and strain capacity. Fibres make it ductile or quasi- ductile with improved tensile and flexural strength, strain capacity, toughness and energy absorption. The binder in fibre- reinforced cement composites (FRCCs) is mainly Portland cement. Environmental awareness in the construction industry is promoting alternative binders to reduce the amount of CO 2 released. The binders in FRCCs can be replaced with inorganic binders, called geopolymeric cement, to create fibre- reinforced geopolymer composites (FRGCs), which are greener. This chapter discusses mechanical properties for FRGCs reinforced with short fibres. Ductile fibre- reinforced geopolymer composites (DFRGCs) exhibiting strain hardening and multiple cracking in flexure are presented.
Related items
Showing items related by title, author, creator and subject.
-
Sudarisman (2009)The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
-
Ahmed, Shaikh (2013)Ductile fibre reinforced cementitious composites (DFRCC) are cement-based composites reinforced with short random fibres (metallic and/or non-metallic) which exhibit deflection-hardening and multiple-cracking behaviours ...
-
Ahmed, Shaikh (2013)Concrete exhibits brittle behaviour due to its low tensile strength. The addition of fibres, either short or continuous, changes its brittle behaviour to ductile or quasi-ductile with significant improvement in tensile ...