Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Review of mechanical properties of short fibre reinforced geopolymer composites

    191804_191804.pdf (1.010Mb)
    Access Status
    Open access
    Authors
    Ahmed, Shaikh
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ahmed, Shaikh. 2013. Review of mechanical properties of short fibre reinforced geopolymer composites. Construction and Building Materials 43: pp. 37-49.
    Source Title
    Construction and Building Materials
    DOI
    10.1016/j.conbuildmat.2013.01.026
    ISSN
    09500618
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Construction and Building Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Construction and Building Materials Oncology, Vol. 43 (2013). DOI: 10.1016/j.conbuildmat.2013.01.026

    URI
    http://hdl.handle.net/20.500.11937/4723
    Collection
    • Curtin Research Publications
    Abstract

    Concrete exhibits brittle behaviour due to its low tensile strength. The addition of fibres, either short or continuous, changes its brittle behaviour to ductile or quasi-ductile with significant improvement in tensile strength, tensile strain, toughness and energy absorption capacities. The binder in the fibre reinforced cement composites (FRCCs) is mainly Portland cement. The recent environmental awareness in construction industry promotes the use of alternative binders to partially or fully replace the cement as its production creates environmental pollution due to release of CO2 into atmosphere. Recent years have seen a great development in new types of inorganic cementitious binders called “geopolymeric cement” around the world. This prompted its use in concrete, which improves the greenness of ordinary concrete. Efforts have been made to replace the cement based binder in the current FRCC with “geopolymeric” binder resulting in fibre reinforced geopolymer composites (FRGCs), which is greener than the former one. The development of FRGC is relatively new in the field of construction materials. This paper presents the state-of-the-art development of short fibre reinforced FRGC and its mechanical properties with emphasis on compressive strength, tensile strength, flexural strength, impact strength and toughness capacities. The durability properties of FRGC are also discussed in this paper. The recent development on ductile fibre reinforced geopolymer composites (DFRGCs) exhibiting deflection hardening and multiple cracking behaviour in flexure is also presented here.

    Related items

    Showing items related by title, author, creator and subject.

    • Development of deflection hardening geopolymer based ductile fiber reinforced cementitious composites
      Ahmed, Shaikh (2013)
      Ductile fibre reinforced cementitious composites (DFRCC) are cement-based composites reinforced with short random fibres (metallic and/or non-metallic) which exhibit deflection-hardening and multiple-cracking behaviours ...
    • Fibre-Reinforced Geopolymer Composites
      Ahmed, Shaikh (2013)
      Concrete is brittle and has low tensile and flexural strength and strain capacity. Fibres make it ductile or quasi- ductile with improved tensile and flexural strength, strain capacity, toughness and energy absorption. ...
    • Fibre-reinforced geopolymer composites (FRGCs) for structural applications
      Shaikh, Faiz (2018)
      © 2014 Woodhead Publishing Limited. Published by Elsevier Ltd. All rights reserved. Concrete is brittle and has low tensile and flexural strength and strain capacity. Fibres make it ductile or quasi-ductile with improved ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.