CO(1-0) survey of high-z radio galaxies: Alignment of molecular halo gas with distant radio sources
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We present a CO(1–0) survey for cold molecular gas in a representative sample of 13 high-z radio galaxies (HzRGs) at 1.4 < z < 2.8, using the Australia Telescope Compact Array. We detect CO(1–0) emission associated with five sources: MRC 0114-211, MRC 0152-209, MRC 0156-252, MRC 1138-262 and MRC 2048-272. The CO(1–0) luminosities are in the range L′CO~(5--9)×1010 K km s−1 pc2. For MRC 0152-209 and MRC 1138-262, part of the CO(1–0) emission coincides with the radio galaxy, while part is spread on scales of tens of kpc and likely associated with galaxy mergers. The molecular gas mass derived for these two systems is MH2 ~ 6 × 1010 M☉ (MH2/L′CO = 0.8). For the remaining three CO-detected sources, the CO(1–0) emission is located in the halo (~50-kpc) environment. These three HzRGs are among the fainter far-IR emitters in our sample, suggesting that similar reservoirs of cold molecular halo gas may have been missed in earlier studies due to pre-selection of IR-bright sources. In all three cases, the CO(1–0) is aligned along the radio axis and found beyond the brightest radio hotspot, in a region devoid of 4.5 μm emission in Spitzer imaging. The CO(1–0) profiles are broad, with velocity widths of ∼1000–3600 km s−1. We discuss several possible scenarios to explain these halo reservoirs of CO(1–0). Following these results, we complement our CO(1–0) study with detections of extended CO from the literature and find at marginal statistical significance (95 per cent level) that CO in HzRGs is preferentially aligned towards the radio jet axis. For the eight sources in which we do not detect CO(1–0), we set realistic upper limits of L′CO~3--4×1010 K km s−1 pc2. Our survey reveals a CO(1–0) detection rate of 38 per cent, allowing us to compare the CO(1–0) content of HzRGs with that of other types of high-z galaxies.
Related items
Showing items related by title, author, creator and subject.
-
Nesvadba, N.; Neri, R.; De Breuck, C.; Lehnert, M.; Dowries, D.; Walter, F.; Omont, A.; Boulanger, F.; Seymour, Nick (2009)We report the detection of luminous CO(3-2) line emission in the halo of the z = 2.6 radio galaxy (HzRG) TXS0828+193, which has no detected counterpart at optical to mid-infrared wavelengths implying a stellar mass ? few ...
-
Bonafede, A.; Intema, Hubertus; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; De Gasperin, F.; Röttgering, H.; Van Weeren, R.; Cassano, R. (2015)Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters ...
-
Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R.; Rafferty, D.; Mechev, A.; Intema, Hubertus; Andrade-Santos, F.; Clarke, A.; Mahony, E.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M. (2018)Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ~650 kpc near the cluster centre ...