Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance

    Access Status
    Open access via publisher
    Authors
    Song, Y.
    Wang, Wei
    Ge, L.
    Xu, X.
    Zhang, Z.
    Julião, P.
    Zhou, W.
    Shao, Zongping
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Song, Y. and Wang, W. and Ge, L. and Xu, X. and Zhang, Z. and Julião, P. and Zhou, W. et al. 2017. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. ADVANCED SCIENCE.
    Source Title
    ADVANCED SCIENCE
    DOI
    10.1002/advs.201700337
    ISSN
    2198-3844
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150104365
    http://purl.org/au-research/grants/arc/DP160104835
    URI
    http://hdl.handle.net/20.500.11937/58136
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable future. They are particularly attractive given that they can be easily integrated into the currently available fossil fuel infrastructure to realize an ideal clean energy system. However, the widespread use of the SOFC technology is hindered by sulfur poisoning at the anode caused by the sulfur impurities in fossil fuels. Therefore, improving the sulfur tolerance of the anode is critical for developing SOFCs for use with fossil fuels. Herein, a novel, highly active, sulfur-tolerant anode for intermediate-temperature SOFCs is prepared via a facile impregnation and limited reaction protocol. During synthesis, Ni nanoparticles, water-storable BaZr 0.4 Ce 0.4 Y 0.2 O 3- d (BZCY) perovskite, and amorphous BaO are formed in situ and deposited on the surface of a Sm 0.2 Ce 0.8 O 1.9 (SDC) scaffold. More specifically, a porous SDC scaffold is impregnated with a well-designed proton-conducting perovskite oxide liquid precursor with the nominal composition of Ba(Zr 0.4 Ce 0.4 Y 0.2 ) 0.8 Ni 0.2 O 3- d (BZCYN), calcined and reduced in hydrogen. The as-synthesized hierarchical architecture exhibits high H 2 electro-oxidation activity, excellent operational stability, superior sulfur tolerance, and good thermal cyclability. This work demonstrates the potential of combining nanocatalysts and water-storable materials in advanced electrocatalysts for SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
      Wang, Wei; Qu, J.; Zhao, B.; Yang, G.; Shao, Zongping (2015)
      Solid oxide fuel cells (SOFCs), which directly convert chemical energy into electricity, have several advantages, such as fuel flexibility and low emissions. Unfortunately, the performance and stability of SOFCs with ...
    • H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels
      Chen, H.; Wang, F.; Wang, W.; Chen, D.; Li, S.; Shao, Zongping (2016)
      For commercialization-oriented solid oxide fuel cells, the state-of-the-art nickel cermet anodes are still the preferable choice because of their several favorable features, such as high electrical conductivity, good ...
    • Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration
      Li, Meng; Hua, B.; Luo, J.; Jiang, S.; Pu, J.; Chi, B.; Li, J. (2016)
      Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.