Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Robust Optimal Control of a Microbial Batch Culture Process

    231821.pdf (301.8Kb)
    Access Status
    Open access
    Authors
    Cheng, G.
    Wang, L.
    Loxton, Ryan
    Lin, Qun
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cheng, G. and Wang, L. and Loxton, R. and Lin, Q. 2015. Robust Optimal Control of a Microbial Batch Culture Process. Journal of Optimization Theory and Applications. 167 (1): pp. 342-362.
    Source Title
    Journal of Optimization Theory and Applications
    DOI
    10.1007/s10957-014-0654-z
    ISSN
    0022-3239
    School
    Department of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/41801
    Collection
    • Curtin Research Publications
    Abstract

    This paper considers the microbial batch culture process for producing 1,3-propanediol (1,3-PD) via glycerol fermentation. Our goal was to design an optimal control scheme for this process, with the aim of balancing two (perhaps competing) objectives: (i) the process should yield a sufficiently high concentration of 1,3-PD at the terminal time and (ii) the process should be robust with respect to changes in various uncertain system parameters. Accordingly, we pose an optimal control problem, in which both process yield and process sensitivity are considered in the objective function. The control variables in this problem are the terminal time of the batch culture process and the initial concentrations of biomass and glycerol in the batch reactor. By performing a time-scaling transformation and introducing an auxiliary dynamic system to calculate process sensitivity, we obtain an equivalent optimal control problem in standard form. We then develop a particle swarm optimization algorithm for solving this equivalent problem. Finally, we explore the trade-off between process efficiency and process robustness via numerical simulations.

    Related items

    Showing items related by title, author, creator and subject.

    • Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process
      Liu, Chongyang; Gong, Z.; Teo, Kok Lay; Sun, Jie; Caccetta, Louis (2017)
      This paper considers optimal control of glycerol producing 1,3-propanediol (1,3-PD) via microbial fed-batch fermentation. The fed-batch process is formulated as a nonlinear switched time-delay system. In general, the ...
    • Optimization of a fed-batch bioreactor for 1,3-propanediol production using hybrid nonlinear optimal control
      Ye, J.; Xu, Honglei; Feng, E.; Xiu, Z. (2014)
      A nonlinear hybrid system was proposed to describe the fed-batch bioconversion of glycerol to 1,3-propanediol with substrate open loop inputs and pH logic control in previous work [47]. The current work concerns the optimal ...
    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.