Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2015 Hydrogen Energy Publications, LLC. The effect of boron species from borosilicate glass sealant on the electrocatalytic activity and microstructure of La0.8Sr0.2MnO3 (LSM) oxygen electrodes is studied for the first time under accelerated solid oxide electrolysis cell (SOEC) operation conditions at 800 °C. The presence of volatile boron species has remarkable detrimental effect on the electrochemical activity of LSM oxygen electrode for the O2 evolution reaction (OER). After polarization at 200 mA cm-2 for 2 h, the electrode polarization and ohmic resistances increase rapidly from ~40 and 1.2 O cm2 to 614 and 33 O cm2, respectively. Under the anodic polarization conditions, there is an accelerated Sr segregation and boron deposition preferentially occurs at the electrode/electrolyte interface, forming lanthanum borates and manganese oxide. Boron deposition and reaction is driven to the interface region due to the increased activity and energetics of lanthanum at LSM lattice sites at the electrode/electrolyte interface under anodic polarization conditions, accelerating the disintegration and delamination of the LSM electrode. The results indicate the potential detrimental effect of volatile boron on the electrochemical activity and stability of LSM oxygen electrodes of solid oxide electrolyzers.
Related items
Showing items related by title, author, creator and subject.
-
Chen, K.; Liu, S.; Guagliardo, P.; Kilburn, M.; Koyama, M.; Jiang, San Ping (2015)Borosilicate glass and glass-ceramics are the most common sealant materials for planar solid oxide fuel cells (SOFCs). This study focuses on the fundamentals of deposition and poisoning of volatile boron species from the ...
-
Chen, Kongfa; Fang, L.; Zhang, T.; Jiang, San Ping (2014)Borosilicate-based glasses are the most common sealant materials for solid oxide fuel cells (SOFCs). However, boron species vaporizing from glass sealants poison and degrade the electrocatalytic activity of cathodes of ...
-
Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...