Show simple item record

atmire.cua.enabled
dc.contributor.authorGarone, E.
dc.contributor.authorNtogramatzidis, Lorenzo
dc.date.accessioned2017-01-30T15:01:41Z
dc.date.available2017-01-30T15:01:41Z
dc.date.created2015-12-10T04:26:02Z
dc.date.issued2015
dc.identifier.citationGarone, E. and Ntogramatzidis, L. 2015. Linear matrix inequalities for globally monotonic tracking control. Automatica. 61: pp. 173-177.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/42727
dc.identifier.doi10.1016/j.automatica.2015.08.009
dc.description.abstract

This paper addresses the problem of achieving monotonic tracking control for any initial condition (also referred to as global monotonic tracking control). This property is shown to be equivalent to global non-overshooting as well as to global non-undershooting (i.e., non-overshooting and non-undershooting for any initial condition, respectively). The main objective of this paper is to prove that a stable system is globally monotonic if and only if all the rows of the output matrix are left eigenvectors of the space transition matrix. This property allows one to formulate the design of a controller which ensures global monotonic tracking as a convex optimization problem described by a set of Linear Matrix Inequalities (LMIs).

dc.publisherPergamon Press
dc.titleLinear matrix inequalities for globally monotonic tracking control
dc.typeJournal Article
dcterms.source.volume61
dcterms.source.startPage173
dcterms.source.endPage177
dcterms.source.issn0005-1098
dcterms.source.titleAutomatica
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record