Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries

    Access Status
    Fulltext not available
    Authors
    Zhu, Y.
    Xu, X.
    Chen, G.
    Zhong, Y.
    Cai, R.
    Li, L.
    Shao, Zongping
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhu, Y. and Xu, X. and Chen, G. and Zhong, Y. and Cai, R. and Li, L. and Shao, Z. 2016. Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochimica Acta. 211: pp. 972-981.
    Source Title
    Electrochimica Acta
    DOI
    10.1016/j.electacta.2016.06.139
    ISSN
    0013-4686
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/42772
    Collection
    • Curtin Research Publications
    Abstract

    Graphene/metal oxide nanocomposites are promising electrode materials for lithium-ion batteries (LIBs), in which synergistic effects between the two components may benefit the overall capacity, rate capability and cycling stability. Here, we report a simple and easy scale-up method for the preparation of high-quality reduced graphite oxide-MoO2 (rGO-MoO2) nanobelt composites, which demonstrate attractive electrochemical performance as LIB anodes. MoO3 nanobelts are first prepared by a simple hydrothermal route and distributed homogeneously in water, and then graphite oxide (GO) is prepared by a modified Hummers method and introduced into the solution. Both materials slowly self-assemble to form GO-MoO3 nanocomposite in a surfactant-free manner. After thermal reduction, rGO-MoO2 nanobelt composites are obtained, as confirmed by FE-SEM and TEM. Using such composite as LIB electrodes, a reversible capacity of 754 mA h g-1 is obtained after 80 cycles at 0.2 A g-1, and the electrode also demonstrates superior rate capabilities. These results are comparable to or even higher than those of other reported graphene-MoO2 composites, which are fabricated in more complicated fashions, thus rendering the current product as highly promising electrode materials for practical use.

    Related items

    Showing items related by title, author, creator and subject.

    • Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization
      Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)
      Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...
    • Highly active and stable Er0.4Bi1.6O3 decorated La0.76Sr0.19MnO3+δ nanostructured oxygen electrodes for reversible solid oxide cells
      Ai, N.; Li, N.; He, S.; Cheng, Y.; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2017)
      Bismuth based oxides have excellent ionic conductivity and fast oxygen surface kinetics and show promising potential as highly active electrode materials in solid oxide cells (SOCs) such as solid oxide fuel cells (SOFCs) ...
    • A double-layer composite electrode based on SrSc0.2Co0.8O3-d perovskite with improved performance in intermediate temperature solid oxide fuel cells
      An, B.; Guo, Y.; Ran, R.; Shao, Zongping (2010)
      Dual-layer composite electrodes consisting of a layer adjoining to an Sm0.2Ce0.8O1.9 (SDC) electrolyte composed of 70 wt.% SrSc0.2Co0.8O3-d + 30 wt.% Sm0.2Ce0.8O1.9 (SScC + SDC composite) and a second layer composed of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.