An In planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases.
Related items
Showing items related by title, author, creator and subject.
-
Chooi, Y.; Zhang, G.; Hu, J.; Muria Gonzalez, Jordi; Tran, P.; Pettitt, A.; Maier, A.; Barrow, R.; Solomon, P. (2017)© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.Parastagonospora nodorum is an important pathogen of wheat. The contribution of secondary metabolites to this pathosystem is poorly understood. A biosynthetic ...
-
Chooi, Y.; Muria-González, Mariano Jordi; Mead, O.; Solomon, P. (2015)© 2015, American Society for Microbiology.Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, ...
-
Solomon, P.; Lee, Robert ; Wilson, T.; Oliver, Richard (2004)A gene encoding malate synthase, a key enzyme of the glyoxylate cycle, has been cloned and characterized in the necrotrophic wheat pathogen Stagonospora nodorum. Expression studies of Mls1 showed high levels of transcript ...