Long-range chemical sensitivity in the sulfur K-edge X-ray absorption spectra of substituted thiophenes
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
Collection
Abstract
© 2014 American Chemical Society. Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments' efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid.
Related items
Showing items related by title, author, creator and subject.
-
Heitz, Anna (2002)The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...
-
Wang, Wei; Qu, J.; Zhao, B.; Yang, G.; Shao, Zongping (2015)Solid oxide fuel cells (SOFCs), which directly convert chemical energy into electricity, have several advantages, such as fuel flexibility and low emissions. Unfortunately, the performance and stability of SOFCs with ...
-
Song, Y.; Wang, Wei; Ge, L.; Xu, X.; Zhang, Z.; Julião, P.; Zhou, W.; Shao, Zongping (2017)© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable ...