Show simple item record

dc.contributor.authorKazantzidou, C.
dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorVardulakis, A.
dc.contributor.authorGarone, E.
dc.date.accessioned2017-01-30T15:37:27Z
dc.date.available2017-01-30T15:37:27Z
dc.date.created2016-05-15T19:30:28Z
dc.date.issued2015
dc.identifier.citationKazantzidou, C. and Ntogramatzidis, L. and Vardulakis, A. and Garone, E. 2015. Geometric structure and properties of LTI systems in the controller canonical form, pp. 354-359.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/48096
dc.description.abstract

In this paper we analyse the geometric properties of systems in the controller canonical form. We show that using a technique based on the calculation of null-spaces of the Rosenbrock system matrix pencil facilitates the computation of the fundamental geometric subspaces for such systems. It is also shown how this geometric analysis can be exploited to derive necessary and sufficient conditions for the solution of the global monotonic tracking control problem solely in terms of the problem data.

dc.titleGeometric structure and properties of LTI systems in the controller canonical form
dc.typeConference Paper
dcterms.source.startPage354
dcterms.source.endPage359
dcterms.source.title2015 Australian Control Conference, AUCC 2015
dcterms.source.series2015 Australian Control Conference, AUCC 2015
dcterms.source.isbn9781922107695
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record