Asymmetric distribution of lunar impact basins caused by variations in target properties
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins with up to twice the diameter of similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner solar system impact bombardment.
Related items
Showing items related by title, author, creator and subject.
-
Neumann, G.; Zuber, M.; Wieczorek, M.; Head, J.; Baker, D.; Solomon, S.; Smith, D.; Lemoine, F.; Mazarico, E.; Sabaka, T.; Goossens, S.; Melosh, H.; Phillips, R.; Asmar, S.; Konopliv, A.; Williams, J.; Sori, M.; Soderblom, J.; Miljkovic, Katarina; Andrews-Hanna, J.; Nimmo, F.; Kiefer, W. (2015)Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, ...
-
Joy, K.; Nemchin, Alexander; Grange, Marion; Lapen, T.; Peslier, A.; Ross, D.; Zolensky, M.; Kring, D. (2014)Dhofar (Dho) 925, 961 and Sayh al Uhaymir (SaU) 449 are brecciated lunar meteorites consisting of mineral fragments and clasts from a range of precursor lithologies including magnesian anorthositic gabbronorite granulites; ...
-
Miljković, Katarina ; Wieczorek, M.; Collins, G.; Solomon, S.; Smith, D.; Zuber, M. (2015)© 2014 Elsevier B.V. Global maps of crustal thickness on the Moon, derived from gravity measurements obtained by NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, have shown that the lunar crust is thinner ...