The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Sepsis is one of the most challenging health problems worldwide. Here we found that phagocytes from patients with sepsis had considerable upregulation of Toll-like receptor 4 (TLR4) and TLR2; however, shock-inducing inflammatory responses mediated by these TLRs were inhibited by ES-62, an immunomodulator secreted by the filarial nematode Acanthocheilonema viteae. ES-62 subverted TLR4 signaling to block TLR2- and TLR4-driven inflammatory responses via autophagosome-mediated downregulation of the TLR adaptor-transducer MyD88. In vivo, ES-62 protected mice against endotoxic and polymicrobial septic shock by TLR4-mediated induction of autophagy and was protective even when administered after the induction of sepsis. Given that the treatments for septic shock at present are inadequate, the autophagy-dependent mechanism of action by ES-62 might form the basis for urgently needed therapeutic intervention against this life-threatening condition. © 2011 Nature America, Inc. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Montalvo, P.; Cavosie, Aaron; Kirkland, C.; Evans, N.; McDonald, B.; Talavera, C.; Erickson, T.; Lugo-Centeno, C. (2019)The Santa Fe structure in northern New Mexico is one of the few confirmed impact craters in the western USA. The history of the impact structure is obscure as it is tectonized and eroded to the extent that an intact crater ...
-
Thomson, O.; Cavosie, Aaron; Moser, D.; Barker, I.; Radovan, H.; French, B. (2014)Detrital shocked minerals can provide valua ble residual records of eroded impact structures. Recent studies have reported shocked minerals in modern alluvium in a subtropical climate from the deeply eroded 2.02 Ga Vredefort ...
-
Montalvo, S.; Cavosie, Aaron; Erickson, T.; Talavera, C. (2017)Meteorite impacts produce shocked minerals in target rocks that record diagnostic high-pressure deformation microstructures unique to hypervelocity processes. When impact craters erode, detrital shocked minerals can be ...