Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
In this paper, we propose a bi-objective dynamic optimization model involving a nonlinear time-delay system to optimize the 1,3-propanediol (1,3-PD) production in a microbial batch process, where the productivity of 1,3-PD and the consumption rate of glycerol are taken as the two objectives. The initial concentrations of biomass and glycerol, and the terminal time of the process are the decision variables. By a time-scaling transformation, we first transform the problem to the one with fixed terminal time but involving a new system with variable time-delay. The normalized normal constraint method is then used to convert the resulting problem into a sequence of single-objective dynamic optimization problems. A gradient-based optimization method incorporating the constraint transcription technique is developed to solve each of these single-objective dynamic optimization problems. Finally, numerical results are provided to demonstrate the effectiveness of the proposed solution method.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
-
Zhou, Jingyang (2011)In this thesis, we deal with several optimal guidance and control problems of the spacecrafts arising from the study of lunar exploration. The research is composed of three parts: 1. Optimal guidance for the lunar module ...
-
Lee, Wei R. (1999)In this thesis we shall investigate the numerical solutions to several important practical static and dynamic optimization problems in engineering and physics. The thesis is organized as follows.In Chapter 1 a general ...