Dynamic wetting of a fluoropolymer surface by ionic liquids
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The spontaneous spreading of ionic liquids on a fluoropolymer surface (Teflon AF1600) in air is investigated by high-speed video microscopy. Six ionic liquids (EMIM BF4, BMIM BF4, OMIM BF4, EMIM NTf2, BMIM NTf2 and HMIM NTf2) are used as probe liquids. The dependence of the dynamic contact angle on contact line velocity is interpreted with a hydrodynamic model and a molecular-kinetic model. The usefulness of the hydrodynamic model is rather limited. There is a good correspondence between the molecular dimensions of the liquids and the physical parameters of the molecular-kinetic model. The viscous and molecular-kinetic contributions to energy dissipation are calculated, revealing that energy is dissipated in the bulk as well as at the contact line during dynamic wetting. There are wide ramifications of these results in areas ranging from lubrication and biology to minerals processing and petroleum recovery.
Related items
Showing items related by title, author, creator and subject.
-
Ben Mahmud, Hisham (2012)The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
-
Li, H.; Paneru, M.; Sedev, Rossen; Ralston, J. (2013)The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF4, [BMIM]PF6, [BMIM]NTf2, [HMIM]NTf2, and [OMIM]BF4) are used as ...
-
Ramiasa, M.; Ralston, J.; Fetzer, R.; Sedev, Rossen; Fopp-Spori, D.; Morhard, C.; Pacholski, C.; Spatz, J. (2013)The motion of a solid-liquid-liquid contact line over nanorough surfaces is investigated. The surface nanodefects are varied in size, density, and shape. The dynamics of the three-phase contact line on all nanorough ...