Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic ß-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Informa UK Limited, trading as Taylor & Francis Group Introduction: Current trials for ß-cell transplantation have been hindered by poor cell viability and function post-transplantation. Recently, electric charges of the microencapsulating formulation carrying ß-cells have shown significant effects on cell survival and function. Thus, this study aimed at investigating the effects of electric charge, of novel colloidal formulation containing ß-cells, on cell viability, biological activity and insulin release. Methods: A new formulation, containing high ratios of poly-L-ornithine, suspending electrical-stimulation hydrogel and polystyrene sulphone (1:1:0.1 ratio), was used to form microcapsules utilizing 800?V and 2000?Hz encapsulating conditions. The bile acid, ursodeoxycholic acid, was added into the microcapsules to measure its effects on electric charges. Results: The electric charge of the microencapsulating formulation was enhanced by bile acid addition, and resulted in better cell viability and function. Conclusion: Ursodeoxycholic acid microencapsulated with poly-L-ornithine, suspending electrical-stimulation hydrogel and polystyrene sulphone at 1:1:0.1 ratio, using 800?V and 2000?Hz microencapsulating conditions, produced enhanced electrokinetic parameters of microcapsules with optimized cell functions. This suggests that electric charge of formulations containing pancreatic ß-cell may have significant effects on cell mass and functions, post-transplantation.
Related items
Showing items related by title, author, creator and subject.
-
Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani (2016)© 2016. Springer Science+Business Media New York.Introduction: The secondary bile acid, deoxycholic acid (DCA), has been shown to exert membrane stabilising effects on a pH sensitive delivery system for the oral delivery ...
-
Mooranian, Armin; Negrulj, Rebecca; Jamieson, E.; Morahan, G.; Al-Salami, Hani (2016)© 2016. Biomedical Engineering Society. Microencapsulation of pancreatic islets has been considered as a promising method for cell transplantation and diabetes treatment. However, in vivo trials to date have been hampered ...
-
Mooranian, A.; Negrulj, R.; Al-Salami, Hani (2016)In past studies using hydrogel-polyelectrolyte matrix and different bile acid excipients, we microencapsulated pancreatic ß-cells using various methods, and the microcapsules were mechanically stable, displayed good ...