ApoplastP: Prediction of effectors and plant proteins in the apoplast using machine learning
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 New Phytologist Trust. The plant apoplast is integral to intercellular signalling, transport and plant-pathogen interactions. Plant pathogens deliver effectors both into the apoplast and inside host cells, but no computational method currently exists to discriminate between these localizations. We present ApoplastP, the first method for predicting whether an effector or plant protein localizes to the apoplast. ApoplastP uncovers features of apoplastic localization common to both effectors and plant proteins, namely depletion in glutamic acid, acidic amino acids and charged amino acids and enrichment in small amino acids. ApoplastP predicts apoplastic localization in effectors with a sensitivity of 75% and a false positive rate of 5%, improving the accuracy of cysteine-rich classifiers by > 13%. ApoplastP does not depend on the presence of a signal peptide and correctly predicts the localization of unconventionally secreted proteins. The secretomes of fungal saprophytes as well as necrotrophic, hemibiotrophic and extracellular fungal pathogens are enriched for predicted apoplastic proteins. Rust pathogens have low proportions of predicted apoplastic proteins, but these are highly enriched for predicted effectors. ApoplastP pioneers apoplastic localization prediction using machine learning. It will facilitate functional studies and will be valuable for predicting if an effector localizes to the apoplast or if it enters plant cells.
Related items
Showing items related by title, author, creator and subject.
-
Sperschneider, J.; Dodds, P.; Gardiner, D.; Singh, Karam; Taylor, J. (2018)© 2018 BSPP and John Wiley & Sons Ltd Plant-pathogenic fungi secrete effector proteins to facilitate infection. We describe extensive improvements to EffectorP, the first machine learning classifier for fungal effector ...
-
Hunziker, Lukas ; Tarallo, M.; Gough, K.; Guo, M.; Hargreaves, C.; Loo, T.S.; McDougal, R.L.; Mesarich, C.H.; Bradshaw, R.E. (2021)Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum ...
-
LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cellSperschneider, J.; Catanzariti, A.; Deboer, K.; Petre, B.; Gardiner, D.; Singh, Karam; Dodds, P.; Taylor, J. (2017)Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational ...