Fast computation of spatially adaptive kernel estimates
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2017 Springer Science+Business Media, LLC Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in (Formula presented.)-dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
Related items
Showing items related by title, author, creator and subject.
-
McSwiggan, G.; Baddeley, Adrian ; Nair, G. (2020)Motivated by the study of traffic accidents on a road network, we discuss the estimation of the relative risk, the ratio of rates of occurrence of different types of events occurring on a network of lines. Methods developed ...
-
Mcswiggan, G.; Baddeley, Adrian; Nair, G. (2016)© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.This paper develops a statistically principled approach to kernel density estimation on a network of lines, such as a road network. Existing heuristic ...
-
Baddeley, Adrian ; Davies, Tilman M; Rakshit, Suman ; Nair, Gopalan; McSwiggan, Greg (2022)Traditional kernel methods for estimating the spatially-varying density of points in a spatial point pattern may exhibit unrealistic artefacts,in addition to the familiar problems of bias and over or under-smoothing.Performance ...