Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH 2 -driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dustmite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG 1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms. © 2014 Phan et al.
Related items
Showing items related by title, author, creator and subject.
-
Phan, J.; Kicic, Anthony; Berry, L.; Sly, P.; Larcombe, Alexander (2016)© 2016 Taylor & Francis. Purpose: Recent studies have employed animal models to investigate links between rhinovirus infection and allergic airways disease, however, most do not involve early life infection, and none ...
-
Foong, X.; Bosco, A.; Troy, N.; Gorman, S.; Hart, P.; Kicic, Anthony; Zosky, G. (2016)© 2016 the American Physiological Society. Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway ...
-
Chen, L.; Perks, K.; Stick, S.; Kicic, Anthony; Larcombe, A.; Zosky, G. (2014)© 2014 Chen et al. Low circulating levels of 25-hydroxyvitamin D [25(OH)D] are associated with chronic lung diseases such as asthma. However, it is unclear whether vitamin D is involved in disease pathogenesis or is ...