In Vitro Expansion of Keratinocytes on Human Dermal Fibroblast-Derived Matrix Retains Their Stem-Like Characteristics
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
DOI
School
Collection
Abstract
The long-term expansion of keratinocytes under serum- and feeder free conditions generally results in diminished proliferation and an increased commitment to terminal differentiation. Here we present a serum and xenogeneic feeder free culture system that retains the self-renewal capacity of primary human keratinocytes. In vivo, the tissue microenvironment is a major contributor to determining cell fate and a key component of the microenvironment is the extracellular matrix (ECM). Accordingly, acellular ECMs derived from human dermal fibroblasts, cultured under macromolecular crowding conditions to facilitate matrix deposition and organisation, were used as the basis for a xenogeneic-free keratinocyte expansion protocol. A phospholipase A2 decellularisation procedure produced matrices which, by proteomics analysis, resembled in composition the core matrix proteins of skin dermis. On these ECMs keratinocytes proliferated rapidly, retained their small size, expressed p63, did not express keratin 10 and rarely expressed keratin 16. Moreover, the colony forming efficiency of keratinocytes cultured on these acellular matrices was markedly enhanced. Collectively these data indicate that the dermal fibroblast-derived matrices support the in vitro expansion of keratinocytes that maintained stem-like characteristics under serum free conditions.
Related items
Showing items related by title, author, creator and subject.
-
Mohammadzadehmoghadam, Soheila (2018)In this study new electrospun silk fibroin (SF) based scaffolds were developed and their material and biocompatibility characteristics evaluated. Three types of SF based scaffolds were generated: SF/halloysite (HNT), ...
-
Wong, Chee Wai (2017)This project explored using dermal fibroblast-derived extracellular matrices (ECMs) to recapitulate the keratinocyte microenvironmental niche in vitro. The data indicated that fibroblast-derived matrices better supported ...
-
Mohammadzadehmoghadam, Soheila; LeGrand, Catherine F; Dong, Yu; Wong, Chee-Wai; Kinnear, Beverley F; Dong, Roger ; Coombe, Deirdre R (2022)The production of nanofibrous materials for soft tissue repair that resemble extracellular matrices (ECMs) is challenging. Electrospinning uniquely produces scaffolds resembling the ultrastructure of natural ECMs. Herein, ...