Show simple item record

dc.contributor.authorPoupin, L.
dc.contributor.authorHumphries, Terry
dc.contributor.authorPaskevicius, Mark
dc.contributor.authorBuckley, Craig
dc.date.accessioned2020-12-15T07:35:42Z
dc.date.available2020-12-15T07:35:42Z
dc.date.issued2019
dc.identifier.citationPoupin, L. and Humphries, T.D. and Paskevicius, M. and Buckley, C.E. 2019. A thermal energy storage prototype using sodium magnesium hydride. Sustainable Energy and Fuels. 3 (4): pp. 985-995.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/82098
dc.identifier.doi10.1039/C8SE00596F
dc.description.abstract

© The Royal Society of Chemistry.

Metal hydrides present favourable thermal storage properties particularly due to their high energy density during thermochemical hydrogenation. For this purpose, sodium magnesium hydride (NaMgH3) has shown promising qualities that could lead to an industrialised application, but first requires to be examined on a lab-scale under realistic operating conditions. Herein, the cycling reversibility of NaMgH3 is undertaken on a 150 g scale with active heat extraction and delivery using superheated water vapour as the heat transfer fluid. The thermal and cycling properties of the hydride material are enhanced by addition of TiB2 and exfoliated natural graphite. Over 40 cycles the NaMgH3 showed minimal loss in capacity, but revealed difficulties in terms of thermal management to avoid local overheating, resulting in the production of undesired molten sodium metal. The temperature cycling showed a hydrogen flow culminating at 1 g h−1, which was insufficient to ensure thermal energy retrieval. The increase of the inlet hydrogen pressure has been shown to be instrumental in achieving an acceptable flow rate of 10 g h−1. Indeed, this design, despite high heat losses to the environment, was able to supply a third of the chemical energy available to the heat transfer fluid.

dc.languageEnglish
dc.publisherROYAL SOC CHEMISTRY
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP120101848
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP150100730
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0989180
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0775551
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT160100303
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectPEROVSKITE-TYPE HYDRIDE
dc.subjectDEHYDRIDING PROPERTIES
dc.subjectMETAL
dc.subjectHEAT
dc.subjectNAMGH3
dc.subjectPERFORMANCE
dc.subjectSYSTEMS
dc.subjectTHERMODYNAMICS
dc.subjectCONDUCTIVITY
dc.subjectOPTIMIZATION
dc.titleA thermal energy storage prototype using sodium magnesium hydride
dc.typeJournal Article
dcterms.source.volume3
dcterms.source.number4
dcterms.source.startPage985
dcterms.source.endPage995
dcterms.source.issn2398-4902
dcterms.source.titleSustainable Energy and Fuels
dc.date.updated2020-12-15T07:35:42Z
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciences (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidBuckley, Craig [0000-0002-3075-1863]
curtin.contributor.orcidHumphries, Terry [0000-0003-1015-4495]
curtin.contributor.orcidPaskevicius, Mark [0000-0003-2677-3434]
curtin.contributor.researcheridBuckley, Craig [B-6753-2013]
curtin.contributor.researcheridPaskevicius, Mark [K-1638-2013]
dcterms.source.eissn2398-4902
curtin.contributor.scopusauthoridBuckley, Craig [56412440100] [7202815196]
curtin.contributor.scopusauthoridHumphries, Terry [12798136600]
curtin.contributor.scopusauthoridPaskevicius, Mark [23025599100]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record